Table 3 Comparison of ML models’ performance.
Characteristics | DNN | SVM | GNB | DT | XGB | GA-XGB |
|---|---|---|---|---|---|---|
AAUC | 0.657 (0.65, 0.664) | 0.6 (0.594, 0.606) | 0.608 (0.599, 0.616) | 0.614 (0.608, 0.62) | 0.686 (0.68, 0.69) | 0.669 (0.663, 0.676) |
BAUC | 0.89 | 0.843 | 0.618 | 0.628 | 0.942 | 0.97 |
APS | 0.06 | 0.047 | 0.044 | 0.038 | 0.062 | 0.068 |
Average recall | 0.972 | 0.972 | 0.936 | 0.971 | 0.971 | 0.974 |
Average f1 score | 0.958 | 0.958 | 0.941 | 0.957 | 0.957 | 0.964 |
Average accuracy | 0.972 | 0.972 | 0.936 | 0.971 | 0.971 | 0.974 |
Average Brier score loss | 0.028 | 0.029 | 0.064 | 0.029 | 0.027 | 0.026 |
Average cross-entropy loss | 0.976 | 0.984 | 2.21 | 0.99 | 0.99 | 0.908 |
Average Jaccard index | 0.944 | 0.944 | 0.91 | 0.943 | 0.944 | 0.949 |
Average Cohen’s kappa | 0.031 | 0.011 | 0.04 | 0 | 0 | 0.178 |