Table 5 Comparison of the performance of state-of-the-art CNN architectures.
Architecture | Number of Parameters (M) | Accuracy (in %) | Precision (in %) | Recall (in %) | F1-score (in %) | Inference Time (per sample) |
|---|---|---|---|---|---|---|
Xception | 22.8 | 77.0 | 62.0 | 54.0 | 57.72 | 0.237 |
VGG16 | 138 | 77.56 | 61.89 | 59.25 | 60.56 | 0.155 |
AlexNet | 57 | 77.97 | 61.20 | 55.69 | 58.30 | 0.612 |
DenseNet | 7.3 | 79.25 | 67.34 | 55.45 | 60.82 | 0.625 |
Resnet50 | 24.11 | 84.25 | 74.0 | 69.30. | 71.61 | 0.213 |
EfficientNet | 4.37 | 88.09 | 88.98 | 88.60 | 88.79 | 0.378 |
Proposed Network | 49 | 93.06 | 88.18 | 87.18 | 87.62 | 0.088 |