Table 2 Clustered survival data structure from the scenario for which the number of patients is 50 and the number of considered molar teeth of each patient is 5.

From: On a Bayesian multivariate survival tree approach based on three frailty models

ID of patient

(i)

Teeth

(j)

Covariate \(({\varvec{{X}}})\)

Failure time

\((Y_{ij})\)

Censoring time

\((C_{ij})\)

\(\tau _{ij}\)

Event status \((\Delta _{ij})\)

1

1

\({\varvec{{X}}}_{11}=(X_1,X_2,X_3,\ldots ,X_p)_{11}\)

\(Y_{11}\)

\(C_{11}\)

\(\tau _{11}=min(Y_{11},C_{11})\)

\(\Delta _{11}=I(\tau _{11},Y_{11})\)

2

\({\varvec{{X}}}_{12}=(X_1,X_2,X_3,\ldots ,X_p)_{12}\)

\(Y_{12}\)

\(C_{12}\)

\(\tau _{12}=min(Y_{12},C_{12})\)

\(\Delta _{12}=I(\tau _{12},Y_{12})\)

3

\({\varvec{{X}}}_{13}=(X_1,X_2,X_3,\ldots ,X_p)_{13}\)

\(Y_{13}\)

\(C_{13}\)

\(\tau _{13}=min(Y_{13},C_{13})\)

\(\Delta _{13}=I(\tau _{13},Y_{13})\)

4

\({\varvec{{X}}}_{14}=(X_1,X_2,X_3,\ldots ,X_p)_{14}\)

\(Y_{14}\)

\(C_{14}\)

\(\tau _{14}=min(Y_{14},C_{14})\)

\(\Delta _{14}=I(\tau _{14},Y_{14})\)

5

\({\varvec{{X}}}_{15}=(X_1,X_2,X_3,\ldots ,X_p)_{15}\)

\(Y_{15}\)

\(C_{15}\)

\(\tau _{15}=min(Y_{15},C_{15})\)

\(\Delta _{15}=I(\tau _{15},Y_{15})\)

2

1

\({\varvec{{X}}}_{21}=(X_1,X_2,X_3,\ldots ,X_p)_{21}\)

\(Y_{21}\)

\(C_{21}\)

\(\tau _{21}=min(Y_{21},C_{21})\)

\(\Delta _{21}=I(\tau _{21},Y_{21})\)

2

\({\varvec{{X}}}_{22}=(X_1,X_2,X_3,\ldots ,X_p)_{22}\)

\(Y_{22}\)

\(C_{22}\)

\(\tau _{22}=min(Y_{22},C_{22})\)

\(\Delta _{22}=I(\tau _{22},Y_{22})\)

3

\({\varvec{{X}}}_{23}=(X_1,X_2,X_3,\ldots ,X_p)_{23}\)

\(Y_{23}\)

\(C_{23}\)

\(\tau _{23}=min(Y_{23},C_{23})\)

\(\Delta _{23}=I(\tau _{23},Y_{23})\)

4

\({\varvec{{X}}}_{24}=(X_1,X_2,X_3,\ldots ,X_p)_{24}\)

\(Y_{24}\)

\(C_{24}\)

\(\tau _{24}=min(Y_{24},C_{24})\)

\(\Delta _{24}=I(\tau _{24},Y_{24})\)

5

\({\varvec{{X}}}_{25}=(X_1,X_2,X_3,\ldots ,X_p)_{25}\)

\(Y_{25}\)

\(C_{25}\)

\(\tau _{25}=min(Y_{25},C_{25})\)

\(\Delta _{25}=I(\tau _{25},Y_{25})\)

â‹®

â‹®

â‹®

â‹®

â‹®

â‹®

â‹®

50

1

\({\varvec{{X}}}_{50,1}=(X_1,X_2,X_3,\ldots ,X_p)_{50,1}\)

\(Y_{50,1}\)

\(C_{50,1}\)

\(\tau _{50,1}=min(Y_{50,1},C_{50,1})\)

\(\Delta _{50,1}=I(\tau _{50,1},Y_{50,1})\)

2

\({\varvec{{X}}}_{50,2}=(X_1,X_2,X_3,\ldots ,X_p)_{50,2}\)

\(Y_{50,2}\)

\(C_{50,2}\)

\(\tau _{50,2}=min(Y_{50,2},C_{50,2})\)

\(\Delta _{50,2}=I(\tau _{50,2},Y_{50,2})\)

3

\({\varvec{{X}}}_{50,3}=(X_1,X_2,X_3,\ldots ,X_p)_{50,3}\)

\(Y_{50,3}\)

\(C_{50,3}\)

\(\tau _{50,3}=min(Y_{50,3},C_{50,3})\)

\(\Delta _{50,3}=I(\tau _{50,3},Y_{50,3})\)

4

\({\varvec{{X}}}_{50,4}=(X_1,X_2,X_3,\ldots ,X_p)_{50,4}\)

\(Y_{50,4}\)

\(C_{50,4}\)

\(\tau _{50,4}=min(Y_{50,4},C_{50,4})\)

\(\Delta _{50,4}=I(\tau _{50,4},Y_{50,4})\)

5

\({\varvec{{X}}}_{50,5}=(X_1,X_2,X_3,\ldots ,X_p)_{50,5}\)

\(Y_{50,5}\)

\(C_{50,5}\)

\(\tau _{50,5}=min(Y_{50,5},C_{50,5})\)

\(\Delta _{50,5}=I(\tau _{50,5},Y_{50,5})\)