Table 6 The average accuracy of the Bayesian multivariate survival tree approaches based on models 1, 2, and 3 for non-molar teeth in elderly patients with non-diabetic simulated in our simulation study.

From: On a Bayesian multivariate survival tree approach based on three frailty models

Number of teeth per patient

% of censoring rate

Number of patients = 200

Number of patients = 500

Number of patients = 1000

Model 1

Model 2

Model 3

Model 1

Model 2

Model 3

Model 1

Model 2

Model 3

\(n_i=5\)

10

0.8097

0.8814

0.9357

0.8254

0.9037

0.9457

0.8386

0.9138

0.9558

50

0.7924

0.8729

0.9249

0.8167

0.8960

0.9399

0.8279

0.9061

0.9500

80

0.7783

0.8629

0.9050

0.7832

0.8709

0.9124

0.8014

0.8810

0.9225

\(n_i=10\)

10

0.8201

0.8963

0.9445

0.8321

0.9175

0.9530

0.8562

0.9276

0.9631

50

0.8016

0.8864

0.9387

0.8279

0.9082

0.9494

0.8473

0.9183

0.9595

80

0.7971

0.8754

0.9125

0.8172

0.8841

0.9204

0.8316

0.8942

0.9305

\(n_i=20\)

10

0.8354

0.9113

0.9571

0.8497

0.9246

0.9722

0.8624

0.9355

0.9832

50

0.8219

0.9036

0.9458

0.8371

0.9157

0.9513

0.8503

0.9258

0.9614

80

0.8193

0.8969

0.9266

0.8313

0.9072

0.9584

0.8415

0.9173

0.9685

  1. Bold face numbers indicate the highest classification accuracy across the three models under each scenario.