Table 2 Estimated parameters and hyperparameter setup of DeepATsers model. Weights shape (x,y,z) where x,y—kernel size, z—# of filters. A/B—A for binary classification, B for multi-class (5) classification.

From: DeepATsers: a deep learning framework for one-pot SERS biosensor to detect SARS-CoV-2 virus

Parameters

Values

Hyperparameters

Values

1st layer weights shape

(8, 1, 16)

Hidden layers

2

(weights, bias)

(128, 16)

Kernel size

8

Trainable parameters

144

Activation functions

tanh, Softmax

Batch normalization

64

Stride

1

2nd layer weights shape

(8, 16, 32)

Epochs

100

(weights, bias)

(256, 32)

Drop out rate

0.4

Trainable parameters

4,128

Learning rate

0.001

Batch normalization

128

Optimizer

Adam

Full connected layer weights shape

(42144, 16)

Batch size

32

(weights, bias)

(674304, 16)

Loss function

SCCE

Trainable parameters

674,320

Input size

1\(\times\)1,331

Output layer weights shape

(16, 2/5)

Weight initialization

Xavier

(weights, bias)

(32, 2/5)

Dropout layer

1

Trainable parameters

34/85

Flatten layer

1

Total trainable parameters

678,722/678,773

Full connected layer

2

Total optimizable parameters

1,357,446/1,357,548

Feature maps

16 and 32