Table 5 Summary of key parameters used in model training and evaluation.

From: Comparative analysis of automated foul detection in football using deep learning architectures

Parameter

Value / Description

Input Image Size

224 × 224 pixels

Batch Size

32

Image Normalization

Rescaled to [0, 1]

Optimizer

Adam

Learning Rate

0.0001

Loss Function

Binary Crossentropy

Primary Metric

Accuracy

Secondary Metrics

Precision, Recall, F1 Score, AUC

Maximum Epochs

300

Early Stopping Patience

10 epochs

Model Checkpointing

Save model with lowest validation loss

Explainability Technique

GradCAM++

GradCAM + + Samples per Epoch

5 per training, validation, and test sets

Test set balance

350 Foul, 350 Not Foul (where feasible)

Train/Validation/Test Split

70% / 20% / 10%

Data Pipeline Framework

TensorFlow tf.data