Table 5 Predictive performance metrics for each model.

From: Hybrid-driven modeling using a BiLSTM–AdaBoost algorithm for diameter prediction in the constant diameter stage of Czochralski silicon single crystals

Model

R2

MSE

RMSE

MAE

MAPE

Training time

CNN

56.434%

7.450 × 10−8

2.729 × 10−4

2.501 × 10−4

0.131%

8.775

GRU

58.177%

5.645 × 10−8

2.376 × 10−4

1.769 × 10−4

0.093%

10.886

CNN-BILSTM

85.595%

1.740 × 10−8

1.319 × 10−4

1.132 × 10−4

0.059%

22.337

CNN-LSTM

87.891%

1.315 × 10−8

1.147 × 10−4

9.569 × 10−5

0.050%

20.359

LSTM

90.862%

1.065 × 10−8

1.032 × 10−4

9.119 × 10−5

0.048%

9.035

BILSTM

91.786%

9.157 × 10−9

9.569 × 10−5

6.999 × 10−5

0.037%

10.177

BILSTM-ADABOOST

95.483%

5.038 × 10−9

7.098 × 10−5

5.917 × 10−5

0.031%

31.094