Table 5 Understanding the effectiveness of LEMONADE and other SOTA NAS frameworks utilizing the GM metric.

From: An automated multi parameter neural architecture discovery framework using ChatGPT in the backend

Method

Search energy (kWh-PUE)

GM values

\(X_A=0.8\), \(X_E=0.2\)

\(X_A=0.5\), \(X_E=0.5\)

\(X_A=0.2\), \(X_E=0.8\)

CIFAR-10

CIFAR-100

ImageNet 16-120

CIFAR-10

CIFAR-100

ImageNet 16-120

CIFAR-10

CIFAR-100

ImageNet 16-120

DeepMaker43

35.55

0.925

0.781

–

0.915

0.825

–

0.906

0.870

–

CGP-CNN44

352.66

0.752

0.586

–

0.470

0.367

–

0.188

0.147

–

EIGEN45

9.48

0.952

–

–

0.960

–

–

0.968

–

–

47.40

–

0.798

–

–

0.823

–

–

0.849

–

GeNet46

161.16

0.852

0.676

–

0.736

0.626

–

0.620

0.577

–

NSGANet47

307.15

0.788

0.624

–

0.541

0.439

–

0.294

0.253

–

NASHBOT48

19.34

0.920

–

–

0.929

–

–

0.939

–

–

NASH-Net49

11.38

0.952

–

–

0.958

–

–

0.964

–

–

GDAS50

4.12

0.947

0.760

0.531

0.962

0.846

0.703

0.978

0.932

0.874

DARTS-51

1.52

0.950

0.771

0.560

0.967

0.856

0.724

0.985

0.940

0.887

DrNAS52

0.57

0.955

0.788

0.570

0.971

0.867

0.731

0.988

0.946

0.892

SE-NAS53

1.39

0.947

–

0.565

0.966

–

0.727

0.984

–

0.889

FairNAS54

1.29

0.945

–

0.537

0.965

–

0.709

0.984

–

0.882

Shapley-NAS55

3.41

0.953

–

0.573

0.967

–

0.730

0.981

–

0.886

DC56

1.85

0.953

–

0.570

0.969

–

0.730

0.985

–

0.889

RMI58

0.16

0.954

0.787

0.571

0.971

0.867

0.732

0.989

0.947

0.893

LEMONADE  (Proposed)

1.20

0.964

–

–

0.976

–

–

0.989

–

–

2.34

–

0.834

–

–

0.894

–

 

0.954

–

5.45

–

–

0.541

–

–

0.707

–

–

0.874

  1. Significant values are in bold.