Table 1 Classification result on ModelNet40.
From: Frame points attention convolution for deep learning on point cloud
Methods | Accuracy | #params | Runtime (ms) |
|---|---|---|---|
Kd-Net18 | 91.8 | 2.0 M | – |
PointNet19 | 89.2 | 3.48 M | 21 |
PointNet++20 | 90.7 | 1.48 M | 33 |
DGCNN25 | 92.2 | 1.84 M | 101 |
RGCNN42 | 90.5 | 2.24 M | 97 |
3DTI-NET43 | 91.7 | 2.6 M | 91 |
PointConv32 | 82.8 | 19.0 M | 97 |
PointCNN30 | 92.2 | 0.45 M | 103 |
KCNET44 | 91.0 | 0.9 M | – |
3DmFV-Net15 | 91.6 | 4.6 M | 44 |
KPConv33 | 92.9 | 6.15 M | 121 |
RS-CNN38 | 92.6 | 1.28 M | 66 |
PointBERT35 | 93.2 | – | – |
PT34 | 93.7 | – | – |
FPAC | 93.9 | 1.94 M | 62 |