Table 2 Comparison of performances on the KITTI dataset.

From: A simple monocular depth estimation network for balancing complexity and accuracy

Method

Venue

Backbone

\(\delta _1\uparrow\)

\(\delta _2\uparrow\)

\(\delta _3\uparrow\)

AbsRel\(\downarrow\)

RMSE\(\downarrow\)

RMSE log\(\downarrow\)

SqRel\(\downarrow\)

Params\(\downarrow\)

DORN17

CVPR 2018

ResNet-101

0.932

0.984

0.994

0.072

2.727

0.120

0.307

–

BTS58

Arxiv 2019

ResNext-101

0.956

0.993

0.998

0.059

2.756

0.096

0.245

47.0M

PWA59

AAAI 2021

DenseNet161

0.956

0.994

0.999

0.062

2.708

0.096

–

–

AdaBins12

CVPR 2021

EfficientNet-B5

0.964

0.995

0.999

0.058

2.360

0.088

0.190

78.0 M

P3Depth60

CVPR 2022

ResNet101

0.953

0.993

0.998

0.071

2.842

0.103

0.270

94.2M

NeWCRFs19

CVPR 2022

Swin-L

0.974

0.997

0.999

0.052

2.129

0.079

0.155

270.5M

LifelongDepth22

TNNLS 2023

ResNet-34

0.939

–

–

0.070

3.286

–

–

22.23M

DepthFormer61

MIR 2023

Swin-L+R-50-C1

0.975

0.997

0.999

0.052

2.143

0.079

0.158

273.0M

IEBins18

NeurIPS 2023

Swin-T

0.970

0.996

0.999

0.056

2.205

0.084

0.169

90.7M

TrapAttention62

CVPR 2023

XCiT-M24

0.976

0.998

0.999

0.054

1.990

0.078

0.149

94.2M

MDEUncertainty63

TCSVT 2024

Swin-L

0.967

0.995

0.999

0.057

2.376

0.089

0.200

–

SQLDepth24

AAAI 2024

ResNet-50

0.962

0.993

0.998

0.058

2.925

0.095

0.289

95.5M

Metric3Dv229

ECCV 2024

ConvNeXt-L

0.967

0.995

0.999

0.060

2.843

0.087

–

203.24M

SimMDE(Ours)

Ours

MSCAN-B

0.974

0.997

0.999

0.052

2.119

0.079

0.156

30.9M

  1. The reported numbers are from the corresponding original papers. Best results are marked bold. The second results are marked underlined.