Table 6 IVBPFS data for alternative \(\:{\varvec{{\rm\:Y}}}_{4}\).

From: Significance and classification of AI-driven techniques in telecommunication sectors based on interval-valued bipolar fuzzy soft aggregation operators

Experts

\(\:{\text{e}}_{1}\)

\(\:{\text{e}}_{2}\)

\(\:{\text{e}}_{3}\)

\(\:{\text{e}}_{4}\)

\(\:{\text{e}}_{5}\)

\(\:{\in}_{1}\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.11,\:0.12\right],\\\:\:\left[-0.23,\:-0.21\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.38,\:0.41\right],\\\:\:\left[-0.47,\:-0.45\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.22,\:0.31\right],\\\:\:\left[-0.41,\:-0.40\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.23,\:0.34\right],\\\:\:\left[-0.41,\:-0.27\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.21,\:0.22\right],\\\:\:\left[-0.27,\:-0.24\right]\end{array}\hspace*{-6pt}\right)\)

\(\:{\in}_{2}\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.19,\:0.25\right],\\\:\:\left[-0.26,\:-0.22\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.50,\:0.58\right],\\\:\:\left[-0.54,\:-0.52\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.48,\:0.49\right],\\\:\:\left[-0.57,\:-0.50\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.47,\:0.48\right],\\\:\:\left[-0.43,\:-0.40\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.50,\:0.61\right],\\\:\:\left[-0.41,\:-0.31\right]\end{array}\hspace*{-6pt}\right)\)

\(\:{\in}_{3}\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.33,\:0.37\right],\\\:\:\left[-0.34,\:-0.31\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.31,\:0.37\right],\\\:\:\left[-0.49,\:-0.41\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.37,\:0.38\right],\\\:\:\left[-0.31,\:-0.30\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.28,\:0.31\right],\\\:\:\left[-0.29,\:-0.25\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.42,\:0.49\right],\\\:\:\left[-0.31,\:-0.30\right]\end{array}\hspace*{-6pt}\right)\)

\(\:{\in}_{4}\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.38,\:0.39\right],\\\:\:\left[-0.31,\:-0.29\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.50,\:0.60\right],\\\:\:\left[-0.42,\:-0.30\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.21,\:0.24\right],\\\:\:\left[-0.31,\:-0.28\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.26,\:0.30\right],\\\:\:\left[-0.29,\:-0.25\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.45,\:0.46\right],\\\:\:\left[-0.39,\:-0.37\right]\end{array}\hspace*{-6pt}\right)\)

\(\:{\in}_{5}\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.22,\:0.26\right],\\\:\:\left[-0.41,\:-0.40\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.41,\:0.46\right],\\\:\:\left[-0.41,\:-0.39\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.51,\:0.52\right],\\\:\:\left[-0.19,\:-0.11\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.21,\:0.22\right],\\\:\:\left[-0.40,\:-0.35\right]\end{array}\hspace*{-6pt}\right)\)

\(\:\left(\hspace*{-6pt}\begin{array}{c}\left[0.51,\:0.62\right],\\\:\:\left[-0.60,\:-0.51\right]\end{array}\hspace*{-6pt}\right)\)