Table 1 Common Fuzzy Graph Operations and Their Mathematical Definitions.
From: Enhancing security in electromagnetic radiation therapy using fuzzy graph theory
Operation | Mathematical definition | Description |
|---|---|---|
Fuzzy graph | G = (V, E, σ, μ) where: V: a set of nodes E ⊆ V × V: set of edges σ: V → [0,1]: node membership function μ: E → [0,1]: edge membership function | Basic fuzzy graph structure with node and edge membership values |
Union | G1 + G2 = (V, σ, μ) where: V = V1 ⋃ V2 σ(v) = σ1(v) if v \(\in\) V1 σ(v) = σ2(v) if v \(\in\) V2 μ(uv) = max{μ1(uv), μ2(uv)} | Combines two fuzzy graphs while preserving the highest membership values |
Cartesian product7 | G1 × G2 = (V, σ, μ) where: V = V1 × V2 σ((u,v)) = min{σ1(u), σ2(v)} μ((u1,v1)(u2,v2)) = min{μ1(u1u2), μ2(v1v2)} | Creates product graph with combined vertices and edges |
Complement | G' = (V, σ, μ') where: - μ'(uv) = min{σ(u), σ(v)}—μ(uv) | Inverts edge membership values while preserving vertices |
Strong product | G1 \(\otimes\) G2 = (V, σ, μ) where: V = V1 × V2 σ((u,v)) = σ1(u) ∧ σ2(v) μ((u1,v1)(u2,v2)) = max{μ1(u1u2) ∧ σ2(v1), σ1(u1) ∧ μ2(v1v2)} | Combines graphs with stronger connectivity requirements |