Table 1 Common Fuzzy Graph Operations and Their Mathematical Definitions.

From: Enhancing security in electromagnetic radiation therapy using fuzzy graph theory

Operation

Mathematical definition

Description

Fuzzy graph

10

G = (V, E, σ, μ) where:

V: a set of nodes

E  V × V: set of edges

σ: V → [0,1]: node membership function

μ: E → [0,1]: edge membership function

Basic fuzzy graph structure with node and edge membership values

Union

3

G1 + G2 = (V, σ, μ) where:

V = V1  V2

σ(v) = σ1(v) if v \(\in\) V1

σ(v) = σ2(v) if v \(\in\) V2

μ(uv) = max{μ1(uv), μ2(uv)}

Combines two fuzzy graphs while preserving the highest membership values

Cartesian product7

G1 × G2 = (V, σ, μ) where:

V = V1 × V2

σ((u,v)) = min{σ1(u), σ2(v)}

μ((u1,v1)(u2,v2)) = min{μ1(u1u2), μ2(v1v2)}

Creates product graph with combined vertices and edges

Complement

6

G' = (V, σ, μ') where:

- μ'(uv) = min{σ(u), σ(v)}—μ(uv)

Inverts edge membership values while preserving vertices

Strong product

8

G1 \(\otimes\) G2 = (V, σ, μ) where:

V = V1 × V2

σ((u,v)) = σ1(u) σ2(v)

μ((u1,v1)(u2,v2)) = max{μ1(u1u2) σ2(v1), σ1(u1) μ2(v1v2)}

Combines graphs with stronger connectivity requirements