Table 3 Comparative experimental results on the foggy cityscapes dataset.
From: A target detection model HR-YOLO for advanced driver assistance systems in foggy conditions
Method | mAP50 | Person | Rider | Car | Truck | Bus | Train | Motorbike | Bicycle | FPS |
|---|---|---|---|---|---|---|---|---|---|---|
Faster RCNN | 0.331 | 0.272 | 0.336 | 0.431 | 0.163 | 0.258 | 0.091 | 0.117 | 0.269 | 9.4 |
SSD300 | 0.346 | 0.334 | 0.379 | 0.425 | 0.284 | 0.366 | 0.378 | 0.255 | 0.314 | 19 |
RetinaNet | 0.315 | 0.291 | 0.397 | 0.429 | 0.208 | 0.374 | 0.241 | 0.265 | 0.299 | 11 |
CenterNet | 0.242 | 0.275 | 0.366 | 0.377 | 0.131 | 0.286 | 0.027 | 0.178 | 0.294 | 23 |
DETR | 0.276 | 0.248 | 0.307 | 0.415 | 0.236 | 0.338 | 0.197 | 0.213 | 0.265 | 26 |
EfficentDet | 0.264 | 0.279 | 0.362 | 0.352 | 0.16 | 0.283 | 0.102 | 0.246 | 0.325 | 29 |
Rtmdet | 0.338 | 0.336 | 0.379 | 0.485 | 0.265 | 0.387 | 0.236 | 0.28 | 0.336 | 27 |
YOLOv5-L | 0.343 | 0.299 | 0.433 | 0.435 | 0.235 | 0.36 | 0.328 | 0.301 | 0.352 | 45 |
YOLOv5-X | 0.41 | 0.432 | 0.478 | 0.586 | 0.238 | 0.457 | 0.392 | 0.315 | 0.382 | 30 |
YOLOX-Tiny | 0.401 | 0.399 | 0.473 | 0.513 | 0.279 | 0.411 | 0.352 | 0.363 | 0.418 | 45 |
YOLOv7-s | 0.379 | 0.471 | 0.497 | 0.539 | 0.252 | 0.389 | 0.159 | 0.311 | 0.414 | 47 |
YOLOv8-n | 0.398 | 0.332 | 0.475 | 0.479 | 0.316 | 0.474 | 0.409 | 0.323 | 0.371 | 110 |
YOLOv8-s | 0.442 | 0.44 | 0.439 | 0.603 | 0.316 | 0.504 | 0.515 | 0.317 | 0.406 | 81 |
YOLOv10-n | 0.399 | 0.389 | 0.499 | 0.543 | 0.259 | 0.483 | 0.337 | 0.286 | 0.396 | 91 |
YOLOv11-n | 0.408 | 0.358 | 0.408 | 0.595 | 0.332 | 0.493 | 0.427 | 0.274 | 0.377 | 128 |
MSFFA-YOLO | 0.468 | 0.448 | 0.433 | 0.642 | 0.398 | 0.551 | 0.501 | 0.383 | 0.388 | 108 |
R-YOLO | 0.489 | 0.473 | 0.495 | 0.666 | 0.391 | 0.558 | 0.522 | 0.409 | 0.444 | 98 |
HR-YOLO | 0.495 | 0.45 | 0.516 | 0.609 | 0.424 | 0.571 | 0.515 | 0.417 | 0.456 | 108 |