Table 3 Comparative experimental results on the foggy cityscapes dataset.

From: A target detection model HR-YOLO for advanced driver assistance systems in foggy conditions

Method

mAP50

Person

Rider

Car

Truck

Bus

Train

Motorbike

Bicycle

FPS

Faster RCNN

0.331

0.272

0.336

0.431

0.163

0.258

0.091

0.117

0.269

9.4

SSD300

0.346

0.334

0.379

0.425

0.284

0.366

0.378

0.255

0.314

19

RetinaNet

0.315

0.291

0.397

0.429

0.208

0.374

0.241

0.265

0.299

11

CenterNet

0.242

0.275

0.366

0.377

0.131

0.286

0.027

0.178

0.294

23

DETR

0.276

0.248

0.307

0.415

0.236

0.338

0.197

0.213

0.265

26

EfficentDet

0.264

0.279

0.362

0.352

0.16

0.283

0.102

0.246

0.325

29

Rtmdet

0.338

0.336

0.379

0.485

0.265

0.387

0.236

0.28

0.336

27

YOLOv5-L

0.343

0.299

0.433

0.435

0.235

0.36

0.328

0.301

0.352

45

YOLOv5-X

0.41

0.432

0.478

0.586

0.238

0.457

0.392

0.315

0.382

30

YOLOX-Tiny

0.401

0.399

0.473

0.513

0.279

0.411

0.352

0.363

0.418

45

YOLOv7-s

0.379

0.471

0.497

0.539

0.252

0.389

0.159

0.311

0.414

47

YOLOv8-n

0.398

0.332

0.475

0.479

0.316

0.474

0.409

0.323

0.371

110

YOLOv8-s

0.442

0.44

0.439

0.603

0.316

0.504

0.515

0.317

0.406

81

YOLOv10-n

0.399

0.389

0.499

0.543

0.259

0.483

0.337

0.286

0.396

91

YOLOv11-n

0.408

0.358

0.408

0.595

0.332

0.493

0.427

0.274

0.377

128

MSFFA-YOLO

0.468

0.448

0.433

0.642

0.398

0.551

0.501

0.383

0.388

108

R-YOLO

0.489

0.473

0.495

0.666

0.391

0.558

0.522

0.409

0.444

98

HR-YOLO

0.495

0.45

0.516

0.609

0.424

0.571

0.515

0.417

0.456

108