Table 1 Comparison between proposed method and previous research.

From: Wind speed prediction based on variational mode decomposition and advanced machine learning models in zaafarana, Egypt

Author

Location

Methods

Period

R²

MSE

RMSE

MAE

Sareen et al.11

Gujarat, India

KNN + CEEMDAN + BiLSTM

1-hours

94%

NA

0.41

0.31

Bommidi et al.2

Block Island and Texas

Transformer + ICEEMDAN

48-hours

90%

NA

0.75

NA

Hu et al.6

western mountains of Chongqing, China

Autoencoder + VMD + Optimized fuzzy mapping network

144-hours

98%

NA

NA

0.462

Liang et al.12

Guangzhou

LSTM + VMD

5-hours

NA

NA

0.112

0.086

Wang et al.10

Denver

Transformer + RF feature selection

36-hours

44%

  

0.52

Zhang et al.13

China

CNN + BiLSTM

1-day

NA

NA

0.77

0.56

Lin et al.14

Fujian

GAOformer

2-hours

NA

3.85

NA

1.45

Li et al.15

Arctic region

CNN-LSTM + CEEMDAN

16-hours

NA

0.3960

0.6293

NA

Bashir et al.3

Pakistan

Seq-2-Seq + Harris hawk’s

2-days

NA

NA

0.639

0.474

Chen et al.4

China

CNN-LSTM-Autoencoder

30-minutes

NA

NA

0.34

0.25

Jiang et al.16

Shenzhen

Graph Neural Network + Temporal Convolutional Network + VMD

12-hours

85%

NA

0.39

NA

Chen et al.17

Karamay

Hilbert–Huang + Nonlinear Autoregressive Dynamic Neural Network

1-day

90%

NA

1.99

NA

Houndekindo et al.18

Canada

RF + Gradient Boosting

1-hour

NA

NA

1.47

1.13

Yu et al.19

Southern Mississippi

CNN + RNN

30-minutes

NA

NA

1.71

1.32

Jiang et al.20

Shandong Province, China

CGRU + XGBoost

2-hours

NA

NA

0.74

0.53

Yuan et al.21

NA

AdaBoost + Relevance Vector Machine

15-minutes

95%

NA

10.403

NA

Zeng et al.22

Average of Six Locations

LightGBM + ANN

1-hour

97%

NA

23.02

10.55

Proposed

Zaafarana, Egypt

LightGBM + VMD

1-month

98%

0.02

0.15

0.12