Table 9 Approach (2): execution computational cost for all AI classification models over all scenarios.
Scenario | AI Model | No. of Trainable Parameters (Million) | Training Time/Epoch (msec) | Testing Time/Image (sec) | Frame Per Second (FPS) | ACC (%) |
|---|---|---|---|---|---|---|
Scenario 1 | ResNet50 | 50.79 | 24 | 0.64 | 1.54 | 94.44 |
VGG16 | 20.89 | 28 | 0.56 | 1.79 | 93.52 | |
ResNet50-V2 | 51.64 | 25 | 0.74 | 1.35 | 90.74 | |
Xception | 10.50 | 63 | 2.88 | 0.35 | 88.89 | |
InceptionResNetV2 | 18.48 | 308 | 1.49 | 0.67 | 87.96 | |
Scenario 2 | Ensemble 1 | 70.17 | 50 | 0.97 | 1.03 | 94.44 |
Ensemble 2 | 76.21 | 67 | 1.26 | 0.79 | 95.37 | |
Scenario 3 | ResNet + ViT | 88.31 | 57 | 1.53 | 0.65 | 95.37 |
Ensemble 1 + ViT | 89.29 | 191 | 2.29 | 0.44 | 97.22 | |
Ensemble 2 + ViT | 89.96 | 192 | 2.31 | 0.43 | 98.15 |