Table 1 Physical components of wastes produced in study area (%).

From: Machine learning-based prediction of heating values in municipal solid waste

City name

Physical composition of the wastes used to calculate heating values

Food waste

Paper and cardboard

Wood and cellulosic materials

Fabrics and textiles

Plastic

Glass

Rubber

Torbat Heydarieh

55.355

5.2

5.285

2.25

13.275

1

0

Jangal

41.050

9

0.6

8.65

25.25

3.25

5.1

Roshtkhar

16.5

6.25

8.75

9

7.5

7.5

7.5

Bayg

37.6

3

7.85

5.25

6

5.1

1.5

Dolatabad

41.45

6.35

2.75

4.3

6.75

2

1.9

Kadkan

56.4

6.15

0.95

4.45

5.9

4.25

1.1

Robatsang

67.59

3.925

1.415

3.555

6.955

2.925

0.69

Sarakhs

27.86

7.46

6.72

4.82

13.72

1.2

0.71

Mazdavand

55.15

3.6

4.31

9.21

12.98

5.5

1.23

Quchan

68.7

3.4

4.4

3.3

13.25

4.6

0.505

Bajgiran

53.650

10.105

1.1

2.38

8.5

3.55

1.6

Chekneh

46.66

3.89

1.430

4.46

10.43

2.085

1.11

Kalat

19.215

14.31

4.39

3.55

12.245

10.420

2.365

Zavin

9.04

4.95

2.1

13.75

13.11

2.6

1.25

Dargaz

53.8

6.2

5.5

2.9

13.85

1.65

0.1

Chapeshlu

53.65

2.45

2.6

3.55

7.45

0.65

0

Lotfabad

39.75

14.15

5.65

2.4

15.45

1.85

1

Nokhandan

60.35

2.2

2

13.95

5.1

1.8

0.4

Neyshabur

61.05

10.685

0.69

2.735

4.245

1.745

0.77

Darud

21.16

0.955

0.97

1.665

4.06

0.415

0.055

Kharv

35.64

4.285

0.54

1.84

9.235

1.34

0.55

Taybad

68.8

7

5.05

2.4

16.3

1.2

1.4

Kariz

5.05

6.3

1.45

2.6

11.6

1.45

1

Mashhad Rizeh

35.55

1.993

4.74

1.495

3.115

1.085

1.04

Mean

42.96

5.99

3.39

4.77

10.25

2.88

1.37

Std

18.79

3.55

2.44

3.55

5.04

2.38

1.67