Table 5 Analysis on classifiers of the proposed hybrid + SUCMO model for datasets.

From: Advances to IoT security using a GRU-CNN deep learning model trained on SUCMO algorithm

 

SVM

ANN

CNN

RF

QNN

GRU-CNN

Hybrid + SUCMO

UNSW-NB15 Dataset

 Accuracy

0.881167

0.898583

0.917667

0.891417

0.878889

0.917667

0.933667

 Sensitivity

0.998068

0.998068

0.998068

0.834063

0.997187

0.917667

0.93898

 Specificity

0.66706

0.716376

0.770411

0.996461

0.662668

0.917667

0.9486

 Precision

0.845927

0.865683

0.888417

0.997688

0.843824

0.917667

0.909379

 F-measure

0.915721

0.927174

0.940056

0.908568

0.914118

0.917667

0.936891

 MCC

0.747756

0.7842

0.824145

0.796554

0.74278

0.835333

0.868224

 NPV

0.994722

0.995084

0.995427

0.766286

0.992301

0.917667

0.841257

 FPR

0.33294

0.283624

0.229589

0.003539

0.337332

0.082333

0.001912

 FNR

0.001932

0.001932

0.001932

0.165937

0.002813

0.082333

0.100819

BoT-IoT Dataset

 Accuracy

0.884833

0.893433

0.8352

0.892933

0.906303

0.873133

0.929692

 Sensitivity

0.712083

0.733583

0.588

0.732333

0.765758

0.682833

0.920196

 Specificity

0.928021

0.933396

0.897

0.933083

0.941439

0.920708

0.929987

 Precision

0.712083

0.733583

0.588

0.732333

0.765758

0.682833

0.93009

 F-measure

0.712083

0.733583

0.588

0.732333

0.765758

0.682833

0.927879

 MCC

0.640104

0.666979

0.485

0.665417

0.707197

0.603542

0.920807

 NPV

0.928021

0.933396

0.897

0.933083

0.941439

0.920708

0.929797

 FPR

0.071979

0.066604

0.103

0.066917

0.058561

0.079292

0.041385

 FNR

0.287917

0.266417

0.412

0.267667

0.234242

0.317167

0.088888