Table 5 Analysis on classifiers of the proposed hybrid + SUCMO model for datasets.
From: Advances to IoT security using a GRU-CNN deep learning model trained on SUCMO algorithm
SVM | ANN | CNN | RF | QNN | GRU-CNN | Hybrid + SUCMO | |
|---|---|---|---|---|---|---|---|
UNSW-NB15 Dataset | |||||||
Accuracy | 0.881167 | 0.898583 | 0.917667 | 0.891417 | 0.878889 | 0.917667 | 0.933667 |
Sensitivity | 0.998068 | 0.998068 | 0.998068 | 0.834063 | 0.997187 | 0.917667 | 0.93898 |
Specificity | 0.66706 | 0.716376 | 0.770411 | 0.996461 | 0.662668 | 0.917667 | 0.9486 |
Precision | 0.845927 | 0.865683 | 0.888417 | 0.997688 | 0.843824 | 0.917667 | 0.909379 |
F-measure | 0.915721 | 0.927174 | 0.940056 | 0.908568 | 0.914118 | 0.917667 | 0.936891 |
MCC | 0.747756 | 0.7842 | 0.824145 | 0.796554 | 0.74278 | 0.835333 | 0.868224 |
NPV | 0.994722 | 0.995084 | 0.995427 | 0.766286 | 0.992301 | 0.917667 | 0.841257 |
FPR | 0.33294 | 0.283624 | 0.229589 | 0.003539 | 0.337332 | 0.082333 | 0.001912 |
FNR | 0.001932 | 0.001932 | 0.001932 | 0.165937 | 0.002813 | 0.082333 | 0.100819 |
BoT-IoT Dataset | |||||||
Accuracy | 0.884833 | 0.893433 | 0.8352 | 0.892933 | 0.906303 | 0.873133 | 0.929692 |
Sensitivity | 0.712083 | 0.733583 | 0.588 | 0.732333 | 0.765758 | 0.682833 | 0.920196 |
Specificity | 0.928021 | 0.933396 | 0.897 | 0.933083 | 0.941439 | 0.920708 | 0.929987 |
Precision | 0.712083 | 0.733583 | 0.588 | 0.732333 | 0.765758 | 0.682833 | 0.93009 |
F-measure | 0.712083 | 0.733583 | 0.588 | 0.732333 | 0.765758 | 0.682833 | 0.927879 |
MCC | 0.640104 | 0.666979 | 0.485 | 0.665417 | 0.707197 | 0.603542 | 0.920807 |
NPV | 0.928021 | 0.933396 | 0.897 | 0.933083 | 0.941439 | 0.920708 | 0.929797 |
FPR | 0.071979 | 0.066604 | 0.103 | 0.066917 | 0.058561 | 0.079292 | 0.041385 |
FNR | 0.287917 | 0.266417 | 0.412 | 0.267667 | 0.234242 | 0.317167 | 0.088888 |