Table 7 Ablation study of the proposed hybrid + SUCMO method.

From: Advances to IoT security using a GRU-CNN deep learning model trained on SUCMO algorithm

 

Proposed without Feature Extraction

Hybrid + SUCMO

UNSW-NB15 Dataset

 Accuracy

0.82

0.933667

 Sensitivity

0.82

0.93898

 Specificity

0.82

0.9486

 Precision

0.82

0.909379

 F-measure

0.82

0.936891

 MCC

0.64

0.868224

 NPV

0.82

0.841257

 FPR

0.18

0.001912

 FNR

0.18

0.100819

BoT-IoT Dataset

 Accuracy

0.656033

0.929692

 Sensitivity

0.140083

0.920196

 Specificity

0.785021

0.929987

 Precision

0.140083

0.93009

 F-measure

0.140083

0.927879

 MCC

0.074896

0.920807

 NPV

0.785021

0.929797

 FPR

0.214979

0.041385

 FNR

0.859917

0.088888