Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Phenomenological model of transthyretin stabilization
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 09 January 2026

Phenomenological model of transthyretin stabilization

  • Bartek Lisowski1,
  • Seweryn Ulaszek1,2,
  • Barbara Wiśniowska3,
  • Veronika Bernhauerová4 &
  • …
  • Sebastian Polak1,5 

Scientific Reports , Article number:  (2026) Cite this article

  • 719 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Biophysics
  • Diseases
  • Neuroscience

Abstract

Transthyretin is a tetrameric transport protein whose monomers, when destabilized, can misfold and form amyloid fibrils, leading to serious diseases like transthyretin amyloidosis cardiomyopathy and neuropathy. While kinetic stabilisers such as tafamidis or acoramidis are designed to prevent tetramer dissociation, clinical data show a puzzling increase in TTR levels after treatment—an effect that our study seeks to investigate by exploring possible underlying mechanisms. Using a simple phenomenological model, we explore whether reduced dissociation alone accounts for this rise or if other mechanisms contribute. We propose that stabilisers may alter TTR clearance by slowing its cellular internalisation or degradation, or even by influencing its synthesis through pharmacological chaperoning. We also examine the role of monomer removal from circulation via re-association into tetramers or through other, possibly pathogenic processes. By integrating pharmacokinetic and pharmacodynamic data with experimental observations, our model provides fresh insights into TTR homeostasis and offers testable predictions for future research. This study highlights the power of simplified, hypothesis-driven models in uncovering biological mechanisms—or, at the very least, in identifying key questions that remain to be answered.

Similar content being viewed by others

The conformational landscape of human transthyretin revealed by cryo-EM

Article 22 January 2025

Integrative structural profiling and ligand optimisation across the transthyretin mutational landscape

Article Open access 25 September 2025

RNA-targeting and gene editing therapies for transthyretin amyloidosis

Article 23 March 2022

Data availability

All data generated or analysed during this study are included in this published article and its supplementary information files.

References

  1. Anderson, P. W. More is different. Science 177(4047), 393–396. https://doi.org/10.1126/science.177.4047.393 (1972).

    Google Scholar 

  2. R. Phillips, ‘ll Seeing with an extra sense’, 2024.

  3. Phillips, R. Schrödinger’s What Is Life? at 75. Cell Syst. 12(6), 465–476. https://doi.org/10.1016/j.cels.2021.05.013 (2021).

    Google Scholar 

  4. C. Sanguinetti et al., ‘The Journey of Human Transthyretin: Synthesis, Structure Stability, and Catabolism’, 2022, MDPI. https://doi.org/10.3390/biomedicines10081906.

  5. Refai, E. et al. Transthyretin constitutes a functional component in pancreatic β-cell stimulus-secretion coupling. Proc. Natl. Acad. Sci. 102(47), 17020–17025. https://doi.org/10.1073/pnas.0503219102 (2005).

    Google Scholar 

  6. Jacobsson, B., Carlström, A., Platz, A. & Collins, V. P. Transthyretin messenger ribonucleic acid expression in the pancreas and in endocrine tumors of the pancreas and gut*. J. Clin. Endocrinol. Metab. 71(4), 875–880. https://doi.org/10.1210/jcem-71-4-875 (1990).

    Google Scholar 

  7. Hamilton, J. A. & Benson, M. D. Transthyretin: A review from a structural perspective. Cell. Mol. Life Sci. 58(10), 1491–1521. https://doi.org/10.1007/PL00000791 (2001).

    Google Scholar 

  8. Foss, T. R., Wiseman, R. L. & Kelly, J. W. The pathway by which the tetrameric protein transthyretin dissociates. Biochemistry 44(47), 15525–15533. https://doi.org/10.1021/bi051608t (2005).

    Google Scholar 

  9. F. Schneider and J. W. Kelly, ‘Transthyretin slowly exchanges subunits under physiological conditions: A convenient chromatographic method to study subunit exchange in oligomeric proteins’, 2001, https://doi.org/10.1101/ps.8901.

  10. P. Hammarström, ‘The Transthyretin Protein and Amyloidosis—an Extraordinary Chemical Biology Platform, 2024, John Wiley and Sons Inc. https://doi.org/10.1002/ijch.202300164.

  11. Colon, W. & Kelly, J. W. Partial denaturation of transthyretin is sufficient for amyloid fibril formation in vitro. Biochemistry 31(36), 8654–8660. https://doi.org/10.1021/bi00151a036 (1992).

    Google Scholar 

  12. Quintas, A., Vaz, D. C., Cardoso, I., Saraiva, M. J. M. & Brito, R. M. M. Tetramer dissociation and monomer partial unfolding precedes protofibril formation in amyloidogenic transthyretin variants. J. Biol. Chem. 276(29), 27207–27213. https://doi.org/10.1074/jbc.M101024200 (2001).

    Google Scholar 

  13. F. L. Ruberg, M. Grogan, M. Hanna, J. W. Kelly, and M. S. Maurer, ‘Transthyretin Amyloid Cardiomyopathy: JACC State-of-the-Art Review’, 2019, Elsevier USA. https://doi.org/10.1016/j.jacc.2019.04.003.

  14. Ruberg, F. L. & Maurer, M. S. Cardiac amyloidosis due to transthyretin protein. Am. Med. Assoc. https://doi.org/10.1001/jama.2024.0442 (2024).

    Google Scholar 

  15. Grzybowski, J. et al. Diagnosis and treatment of transthyretin amyloidosis cardiomyopathy: A position statement of the polish cardiac society. Kardiol. Pol. 81(11), 1167–1185. https://doi.org/10.33963/v.kp.97648 (2023).

    Google Scholar 

  16. D. Adams, H. Koike, M. Slama, and T. Coelho, ‘Hereditary transthyretin amyloidosis: a model of medical progress for a fatal disease’, 2019, Nature Publishing Group. https://doi.org/10.1038/s41582-019-0210-4.

  17. Gillmore, J. D. et al. Efficacy and safety of acoramidis in transthyretin amyloid cardiomyopathy. N. Engl. J. Med. 390(2), 132–142. https://doi.org/10.1056/nejmoa2305434 (2024).

    Google Scholar 

  18. Bulawa, C. E. et al. Tafamidis, a potent and selective transthyretin kinetic stabilizer that inhibits the amyloid cascade. Proc. Natl. Acad. Sci. 109(24), 9629–9634. https://doi.org/10.1073/pnas.1121005109 (2012).

    Google Scholar 

  19. Nelson, L. T. et al. Blinded potency comparison of transthyretin kinetic stabilisers by subunit exchange in human plasma. Amyloid 28(1), 24–29. https://doi.org/10.1080/13506129.2020.1808783 (2021).

    Google Scholar 

  20. Tess, D. A. et al. Relationship of binding-site occupancy, transthyretin stabilisation and disease modification in patients with tafamidis-treated transthyretin amyloid cardiomyopathy. Amyloid 30(2), 208–219. https://doi.org/10.1080/13506129.2022.2145876 (2023).

    Google Scholar 

  21. S. E. Saith et al., ‘Factors associated with changes in serum transthyretin after treatment with tafamidis and outcomes in transthyretin cardiac amyloidosis’, 2021, Taylor and Francis Ltd. https://doi.org/10.1080/13506129.2021.1904390.

  22. Falk, R. H., Haddad, M., Walker, C. R., Dorbala, S. & Cuddy, S. A. M. Effect of tafamidis on serum transthyretin levels in non-trial patients with transthyretin amyloid cardiomyopathy. JACC CardioOncol. 3(4), 580–586. https://doi.org/10.1016/j.jaccao.2021.08.007 (2021).

    Google Scholar 

  23. Ulaszek, S., Wiśniowska, B. & Lisowski, B. No body fits in the test tube—The case of transthyretin. Amyloid 31(4), 347–349. https://doi.org/10.1080/13506129.2024.2401154 (2024).

    Google Scholar 

  24. E. T. Powers, L. Amass, L. Baylor, I. Fernández-Arias, S. Riley, and J. W. Kelly, ‘Transthyretin Kinetic Stabilizers for ATTR Amyloidosis: A Narrative Review of Mechanisms and Therapeutic Benefits’, 2025, Adis. https://doi.org/10.1007/s40119-025-00423-7.

  25. Oppenheimer, J. H., Surks, M. I., Bernstein, G. & Smith, J. C. Metabolism of Iodine-131-labeled thyroxine-binding prealbumin in man. Science 149(3685), 748–751. https://doi.org/10.1126/science.149.3685.748 (1965).

    Google Scholar 

  26. Wiseman, R. L., Green, N. S. & Kelly, J. W. Kinetic stabilization of an oligomeric protein under physiological conditions demonstrated by a lack of subunit exchange: Implications for transthyretin amyloidosis. Biochemistry 44(25), 9265–9274. https://doi.org/10.1021/bi050352o (2005).

    Google Scholar 

  27. Sekijima, Y. et al. Serum transthyretin monomer in patients with familial amyloid polyneuropathy. Amyloid 8(4), 257–262. https://doi.org/10.3109/13506120108993822 (2001).

    Google Scholar 

  28. Rappley, I. et al. Quantification of transthyretin kinetic stability in human plasma using subunit exchange. Biochemistry 53(12), 1993–2006. https://doi.org/10.1021/bi500171j (2014).

    Google Scholar 

  29. Lockwood, P. A. et al. The bioequivalence of Tafamidis 61-mg free acid capsules and Tafamidis Meglumine 4 × 20-mg capsules in healthy volunteers. Clin. Pharmacol. Drug. Dev. 9(7), 849–854. https://doi.org/10.1002/cpdd.789 (2020).

    Google Scholar 

  30. Yiengst, M. J. & Shock, N. W. Blood and plasma volume in adult males. J. Appl. Physiol. 17(2), 195–198. https://doi.org/10.1152/jappl.1962.17.2.195 (1962).

    Google Scholar 

  31. Soetaert, K. & Petzoldt, T. Inverse modelling, sensitivity and Monte Carlo analysis in R using package FME. J. Stat. Softw. https://doi.org/10.18637/jss.v033.i03 (2010).

    Google Scholar 

  32. F. Marin, A. Rohatgi, and S. Charlot, ‘WebPlotDigitizer, a polyvalent and free software to extract spectra from old astronomical publications: application to ultraviolet spectropolarimetry’, Aug. 2017, [Online]. Available: http://arxiv.org/abs/1708.02025

  33. Committee for Medicinal Products for Human Use (CHMP), ‘Assessment report - Vyndaquel’, Sep. 2011. Accessed: Feb. 12, 2025. [Online]. Available: https://www.ema.europa.eu/en/documents/assessment-report/vyndaqel-epar-public-assessment-report_en.pdf

  34. Purkey, H. E., Dorrell, M. I. & Kelly, J. W. ‘Evaluating the binding selectivity of transthyretin amyloid fibril inhibitors in blood plasma. Proc Natl Acad Sci U S A 98(10), 5566–5571. https://doi.org/10.1073/pnas.091431798 (2001).

    Google Scholar 

  35. Wei, S. et al. Studies on the metabolism of retinol and retinol-binding protein in transthyretin-deficient mice produced by homologous recombination. J. Biol. Chem. 270(2), 866–870. https://doi.org/10.1074/jbc.270.2.866 (1995).

    Google Scholar 

  36. Monaco, H., Rizzi, M. & Coda, A. Structure of a complex of two plasma proteins: transthyretin and retinol-binding protein. Science 268(5213), 1039–1041. https://doi.org/10.1126/science.7754382 (1995).

    Google Scholar 

  37. Hyung, S.-J., Deroo, S. & Robinson, C. V. Retinol and retinol-binding protein stabilize transthyretin via formation of retinol transport complex. ACS Chem. Biol. 5(12), 1137–1146. https://doi.org/10.1021/cb100144v (2010).

    Google Scholar 

  38. Raghu, P. & Sivakumar, B. Interactions amongst plasma retinol-binding protein, transthyretin and their ligands: implications in vitamin A homeostasis and transthyretin amyloidosis. Biochimica et Biophysica Acta BBA Proteins and Proteomics 1703(1), 1–9. https://doi.org/10.1016/j.bbapap.2004.09.023 (2004).

    Google Scholar 

  39. M. Alhamadsheh, ‘Comment to “Nelson LT, Paxman RJ, Xu J, et al. Blinded potency comparison of transthyretin kinetic stabilisers by subunit exchange in human plasma”’, 2021, Taylor and Francis Ltd. https://doi.org/10.1080/13506129.2020.1853093.

  40. J. Kelly and E. Powers, ‘Response’, 2021, Taylor and Francis Ltd. https://doi.org/10.1080/13506129.2020.1853094.

  41. Ho, D. D. et al. Rapid turnover of plasma virions and CD4 lymphocytes in HIV-1 infection. Nature 373(6510), 123–126. https://doi.org/10.1038/373123a0 (1995).

    Google Scholar 

  42. Wei, X. et al. Viral dynamics in human immunodeficiency virus type 1 infection. Nature 373(6510), 117–122. https://doi.org/10.1038/373117a0 (1995).

    Google Scholar 

  43. Jayaweera, S. W. et al. Misfolding of transthyretin in vivo is controlled by the redox environment and macromolecular crowding. J. Biol. Chem. https://doi.org/10.1016/j.jbc.2024.108031 (2025).

    Google Scholar 

  44. Erickson, H. P. ‘Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol. Proced. Online. https://doi.org/10.1007/s12575-009-9008-x (2009).

    Google Scholar 

  45. Pedretti, R. et al. Structure-based probe reveals the presence of large transthyretin aggregates in plasma of ATTR amyloidosis patients. JACC Basic Transl. Sci. 9(9), 1088–1100. https://doi.org/10.1016/j.jacbts.2024.05.013 (2024).

    Google Scholar 

  46. Bartels, T., Choi, J. G. & Selkoe, D. J. α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation. Nature 477(7362), 107–111. https://doi.org/10.1038/nature10324 (2011).

    Google Scholar 

  47. Sakai, T. et al. Structural and thermodynamic insights into antibody light chain tetramer formation through 3D domain swapping. Nat. Commun. https://doi.org/10.1038/s41467-023-43443-4 (2023).

    Google Scholar 

  48. Zhu, C., Beck, M. V., Griffith, J. D., Deshmukh, M. & Dokholyan, N. V. Large SOD1 aggregates, unlike trimeric SOD1, do not impact cell viability in a model of amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U S A 115(18), 4661–4665. https://doi.org/10.1073/pnas.1800187115 (2018).

    Google Scholar 

  49. Torricella, F., Tugarinov, V. & Clore, G. M. Nucleation of huntingtin aggregation proceeds via conformational conversion of pre-formed, sparsely-populated tetramers. Adv. Sci. https://doi.org/10.1002/advs.202309217 (2024).

    Google Scholar 

  50. Hanson, J. L. S. et al. Use of serum transthyretin as a prognostic indicator and predictor of outcome in cardiac amyloid disease associated with wild-type transthyretin. Circ. Heart Fail https://doi.org/10.1161/CIRCHEARTFAILURE.117.004000 (2018).

    Google Scholar 

  51. Hood, C. J. et al. Update on disease-specific biomarkers in transthyretin cardiac amyloidosis. Curr. Heart Fail Rep. 19(5), 356–363. https://doi.org/10.1007/s11897-022-00570-1 (2022).

    Google Scholar 

  52. Gonzalez-Lopez, E., Maurer, M. S. & Garcia-Pavia, P. Transthyretin amyloid cardiomyopathy: A paradigm for advancing precision medicine. Eur. Heart J. https://doi.org/10.1093/eurheartj/ehae811 (2025).

    Google Scholar 

  53. Guglielmino, V. et al. Serum biomarkers in transthyretin amyloidosis: An overview of neurofilaments, cardiac, renal, and gastrointestinal involvement. Neurol. Ther. 14(1), 71–84. https://doi.org/10.1007/s40120-024-00696-5 (2025).

    Google Scholar 

  54. Adams, D. et al. Expert opinion on monitoring symptomatic hereditary transthyretin-mediated amyloidosis and assessment of disease progression. Orphanet. J. Rare Dis. 16(1), 411. https://doi.org/10.1186/s13023-021-01960-9 (2021).

    Google Scholar 

  55. Ando, Y. et al. Change in variant transthyretin levels in patients with familial amyloidotic polyneuropathy type I following liver transplantation. Biochem. Biophys. Res. Commun. 211(2), 354–358. https://doi.org/10.1006/bbrc.1995.1820 (1995).

    Google Scholar 

  56. M. M. Sousa and M. J. Saraiva, ‘Internalization of transthyretin. Evidence of a novel yet unidentified receptor-associated protein (RAP)-sensitive receptor’, In: Journal of Biological Chemistry, American Society for Biochemistry and Molecular Biology Inc., Apr. 2001, pp. 14420–14425. https://doi.org/10.1074/jbc.M010869200.

  57. Corazza, A. et al. Binding of monovalent and bivalent ligands by transthyretin causes different short- and long-distance conformational changes. J. Med. Chem. 62(17), 8274–8283. https://doi.org/10.1021/acs.jmedchem.9b01037 (2019).

    Google Scholar 

  58. B. Basanta et al., ‘The conformational landscape of human transthyretin revealed by cryo-EM’, 2024. https://doi.org/10.1101/2024.01.23.576879.

  59. I. C. Romine and R. L. Wiseman, ‘Starting at the beginning: Endoplasmic reticulum proteostasis and systemic amyloid disease’, 2020, Portland Press Ltd. https://doi.org/10.1042/BCJ20190312.

  60. Sekijima, Y. et al. The biological and chemical basis for tissue-selective amyloid disease. Cell 121(1), 73–85. https://doi.org/10.1016/j.cell.2005.01.018 (2005).

    Google Scholar 

  61. Miller, M. et al. Enthalpy-driven stabilization of transthyretin by AG10 mimics a naturally occurring genetic variant that protects from transthyretin amyloidosis. J. Med. Chem. 61(17), 7862–7876. https://doi.org/10.1021/acs.jmedchem.8b00817 (2018).

    Google Scholar 

Download references

Funding

This research was co-funded by the European Union within the VITAL Horizon Europe project (Grant nr 101136728). BL and VB are supported by a grant from the Priority Research Area qLIFE under the Strategic Programme Excellence Initiative at Jagiellonian University under the agreement 06/IDUB/2019/94. VB acknowledges the support of UNCE, project number UNCE/24/MED/008 and the project New Technologies for Translational Research in Pharmaceutical Sciences / NETPHARM, project ID CZ.02.01.01/00/22_008/0004607, co-funded by the European Union.

Author information

Authors and Affiliations

  1. Chair of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland

    Bartek Lisowski, Seweryn Ulaszek & Sebastian Polak

  2. Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, Kraków, Poland

    Seweryn Ulaszek

  3. Department of Social Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland

    Barbara Wiśniowska

  4. Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic

    Veronika Bernhauerová

  5. Certara Predictive Technologies (a Certara Company), Level 2-Acero, 1 Concourse Way, Sheffield, S1 2BJ, UK

    Sebastian Polak

Authors
  1. Bartek Lisowski
    View author publications

    Search author on:PubMed Google Scholar

  2. Seweryn Ulaszek
    View author publications

    Search author on:PubMed Google Scholar

  3. Barbara Wiśniowska
    View author publications

    Search author on:PubMed Google Scholar

  4. Veronika Bernhauerová
    View author publications

    Search author on:PubMed Google Scholar

  5. Sebastian Polak
    View author publications

    Search author on:PubMed Google Scholar

Contributions

BL, SU and SP conceived the study and designed the model. BL performed the simulations. BL, SU, VB analysed the data. BL, SU, VB, BW contributed to data interpretation and visualization. BL and SU wrote the first draft of the manuscript. All authors reviewed and approved the final version of the manuscript.

Corresponding author

Correspondence to Bartek Lisowski.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lisowski, B., Ulaszek, S., Wiśniowska, B. et al. Phenomenological model of transthyretin stabilization. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35000-y

Download citation

  • Received: 13 October 2025

  • Accepted: 01 January 2026

  • Published: 09 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35000-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing