Abstract
Brown carbon aerosols (BrC) significantly contribute to regional climate warming in East Asia. However, their sources and atmospheric transformation remain poorly constrained due to limited observations. In this study, we clarified the seasonal dynamics of BrC and quantified the sources of relating carbonaceous components, at the gateway of the East Asian air outflow for seasonal variations. Our findings reveal that fossil fuel combustion dominates the sources of BrC containing carbonaceous components in winter, while biomass burning and local biogenic sources become more prominent in spring and summer, respectively. We provide benchmark optical properties of BrC for climate model simulations, demonstrating that the absorption coefficient and mass absorption cross-section of water-soluble fraction from land-originated air masses (0.47 Mm−1 and 0.53 m2 gC−1, respectively) are more than twice those of sea-originated air masses (0.11 Mm−1 and 0.21 m2 gC−1, respectively). Additionally, we show that BrC undergoes photochemical degradation during transport with a half-life of approximately 1.2 days. A significant reduction in BrC levels during the COVID-19 lockdown period highlights the potential of stringent emission controls to mitigate air pollution and its associated climate impacts. By shedding light on the seasonal dynamics, diverse sources, and atmospheric ageing of BrC, the study provides valuable insights for emission reduction strategies and improving BrC representation in climate models.
Similar content being viewed by others
Data availability
The observational optical and chemical data, input for PMF analyses and isotopic analyzed results are available at [https://doi.org/10.5281/zenodo.13831520] (https:/doi.org/https://doi.org/10.5281/zenodo.13831520). The meteorological data for FLEXPART input are available at https://rda.ucar.edu/datasets/d083002/.
References
Hecobian, A. et al. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 10(13), 5965–5977. https://doi.org/10.5194/acp-10-5965-2010 (2010).
Laskin, A., Laskin, J. & Nizkorodov, S. A. Chemistry of Atmospheric brown carbon. Chem. Rev. 115(10), 4335–4382. https://doi.org/10.1021/cr5006167 (2015).
Chakrabarty, R. K. et al. Shortwave absorption by wildfire smoke dominated by dark brown carbon. Nat. Geosci. 16(8), 683–688. https://doi.org/10.1038/s41561-023-01237-9 (2023).
Alexander, D. T. L., Crozier, P. A. & Anderson, J. R. Brown carbon spheres in East Asian outflow and their optical properties. Science 321(5890), 833–836. https://doi.org/10.1126/science.1155296 (2008).
Zeng, L. H. et al. Global Measurements of Brown Carbon and Estimated Direct Radiative Effects. Geophys Res Lett 47(13), e2020GL088747. https://doi.org/10.1029/2020GL088747 (2020).
Zhang, A. X. et al. Modeling the global radiative effect of brown carbon: A potentially larger heating source in the tropical free troposphere than black carbon. Atmos. Chem. Phys. 20(4), 1901–1920. https://doi.org/10.5194/acp-20-1901-2020 (2020).
Zhang, Y. Z. et al. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nat. Geosci. 10(7), 486–489. https://doi.org/10.1038/Ngeo2960 (2017).
Cheng, Y. et al. Decreasing concentrations of carbonaceous aerosols in China from 2003 to 2013. Sci. Rep.-Uk 11(1), 5352. https://doi.org/10.1038/s41598-021-84429-w (2021).
Kalita, G., Kunchala, R. K., Fadnavis, S. & Kaskaoutis, D. G. Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmos. Res. 245, 105064. https://doi.org/10.1016/j.atmosres.2020.105064 (2020).
Yttri, K. E. et al. Trends, composition, and sources of carbonaceous aerosol at the birkenes observatory, northern Europe, 2001–2018. Atmos. Chem. Phys. 21(9), 7149–7170. https://doi.org/10.5194/acp-21-7149-2021 (2021).
Zhou, R. et al. Characteristics of wintertime carbonaceous aerosols in two typical cities in Beijing-Tianjin-Hebei region, China: Insights from multiyear measurements. Environ. Res. 216, 114469. https://doi.org/10.1016/j.envres.2022.114469 (2023).
Kaskaoutis, D. G.; Liakakou, E.; Grivas, G.; Gerasopoulos, E.; Mihalopoulos, N.; Alastuey, A.; Dulac, F.; Dumka, U. C.; Pandolfi, M.; Pikridas, M. Interannual variability and long-term trends of aerosols above the Mediterranean. In Atmospheric Chemistry in the Mediterranean Region: Volume 1-Background Information and Pollutant Distribution, Springer, 2023; pp 357–390.
Li, J. et al. Scattering and absorbing aerosols in the climate system. Nat. Rev. Earth Environ. 3(6), 363–379. https://doi.org/10.1038/s43017-022-00296-7 (2022).
Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Climate change 2021: the physical science basis 2021.
Brown, H. et al. Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5). Atmos. Chem. Phys. 18(24), 17745–17768. https://doi.org/10.5194/acp-18-17745-2018 (2018).
Brown, H. et al. Biomass burning aerosols in most climate models are too absorbing. Nat. Commun. 12(1), 277. https://doi.org/10.1038/s41467-020-20482-9 (2021).
Liu, D. T., He, C. L., Schwarz, J. P. & Wang, X. Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. Npj Clim. Atmos. Sci. 3(1), 40. https://doi.org/10.1038/s41612-020-00145-8 (2020).
Fang, W. et al. Combined influences of sources and atmospheric bleaching on light absorption of water-soluble brown carbon aerosols. Npj Clim. Atmos. Sci. 6(1), 104. https://doi.org/10.1038/s41612-023-00438-8 (2023).
Kirillova, E. N., Andersson, A., Han, J., Lee, M. & Gustafsson, Ö. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China. Atmos. Chem. Phys. 14(3), 1413–1422. https://doi.org/10.5194/acp-14-1413-2014 (2014).
Wang, D. et al. Winter brown carbon over six of China’s megacities: light absorption, molecular characterization, and improved source apportionment revealed by multilayer perceptron neural network. Atmos. Chem. Phys. 22(22), 14893–14904. https://doi.org/10.5194/acp-22-14893-2022 (2022).
Zhong, M. et al. Characterizing water-soluble brown carbon in fine particles in four typical cities in northwestern China during wintertime: integrating optical properties with chemical processes. Atmos. Chem. Phys. 23(19), 12609–12630 (2023).
Yan, C. et al. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions. Atmos. Environ. 121, 4–12. https://doi.org/10.1016/j.atmosenv.2015.05.005 (2015).
Du, Z. et al. A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmos. Environ. 89, 235–241. https://doi.org/10.1016/j.atmosenv.2014.02.022 (2014).
Cheng, Y. et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmos. Chem. Phys. 11(22), 11497–11510. https://doi.org/10.5194/acp-11-11497-2011 (2011).
Lei, Y. et al. Characterization of water−soluble brown carbon in atmospheric fine particles over Xi’an, China: Implication of aqueous brown carbon formation from biomass burning. Sci. Total Environ. 881, 163442. https://doi.org/10.1016/j.scitotenv.2023.163442 (2023).
Liu, X. et al. Secondary formation of atmospheric brown carbon in China Haze: Implication for an enhancing role of ammonia. Environ. Sci. Technol. 57(30), 11163–11172. https://doi.org/10.1021/acs.est.3c03948 (2023).
Forrister, H. et al. Evolution of brown carbon in wildfire plumes. Geophys. Res. Lett. 42(11), 4623–4630. https://doi.org/10.1002/2015gl063897 (2015).
Li, Q. et al. Concurrent photochemical whitening and darkening of ambient brown carbon. Atmos. Chem. Phys. 23(16), 9439–9453. https://doi.org/10.5194/acp-23-9439-2023 (2023).
Wen, H. et al. Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources. Sci. Total Environ. 789, 147971. https://doi.org/10.1016/j.scitotenv.2021.147971 (2021).
Kanaya, Y. et al. Rapid reduction in black carbon emissions from China: Evidence from 2009–2019 observations on Fukue Island, Japan. Atmos. Chem. Phys. 20(11), 6339–6356. https://doi.org/10.5194/acp-20-6339-2020 (2020).
Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18(19), 14095–14111. https://doi.org/10.5194/acp-18-14095-2018 (2018).
Chen, Q. et al. Widespread 2013–2020 decreases and reduction challenges of organic aerosol in China. Nat. Commun. 15(1), 4465. https://doi.org/10.1038/s41467-024-48902-0FromNLMPubMed-not-MEDLINE (2024).
Updyke, K. M., Nguyen, T. B. & Nizkorodov, S. A. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos. Environ. 63, 22–31. https://doi.org/10.1016/j.atmosenv.2012.09.012 (2012).
Nguyen, T. B., Laskin, A., Laskin, J. & Nizkorodov, S. A. Brown carbon formation from ketoaldehydes of biogenic monoterpenes. Faraday Discuss. 165, 473–494. https://doi.org/10.1039/c3fd00036b (2013).
Veira, A., Lasslop, G. & Kloster, S. Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090–2099. J. Geophys. Res.-Atmos. 121(7), 3195–3223. https://doi.org/10.1002/2015jd024142 (2016).
Zhu, C. et al. Sources of atmospheric black carbon and related carbonaceous components at Rishiri Island, Japan: The roles of Siberian wildfires and of crop residue burning in China. Environ. Pollut. 247, 55–63. https://doi.org/10.1016/j.envpol.2019.01.003 (2019).
Pérez-Invernón, F. J., Gordillo-Vázquez, F. J., Huntrieser, H. & Jöckel, P. Variation of lightning-ignited wildfire patterns under climate change. Nat. Commun. 14(1), 739. https://doi.org/10.1038/s41467-023-36500-5 (2023).
Bai, Z. et al. Water/methanol-insoluble brown carbon can dominate aerosol-enhanced light absorption in port cities. Environ. Sci. Technol. 54(23), 14889–14898. https://doi.org/10.1021/acs.est.0c03844 (2020).
Birch, M. E. & Cary, R. A. Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: Methodology and exposure issues. Analyst 121(9), 1183–1190. https://doi.org/10.1039/AN9962101183.DOI:10.1039/AN9962101183 (1996).
Cheng, Y. et al. The characteristics of brown carbon aerosol during winter in Beijing. Atmos. Environ. 127, 355–364. https://doi.org/10.1016/j.atmosenv.2015.12.035 (2016).
Xie, X. C. et al. Light-absorbing and fluorescent properties of atmospheric brown carbon: A case study in Nanjing, China. Chemosphere 251, 126350. https://doi.org/10.1016/j.chemosphere.2020.126350 (2020).
Phillips, S. M. & Smith, G. D. Spectroscopic comparison of water- and methanol-soluble brown carbon particulate matter. Aerosol. Sci. Tech. 51(9), 1113–1121. https://doi.org/10.1080/02786826.2017.1334109 (2017).
Zhu, C. et al. Light-absorption properties of brown carbon aerosols in the Asian outflow: Implications of a combination of filter and ground remote-sensing observations at Fukue Island, Japan. Sci. Total Environ. 797, 149155. https://doi.org/10.1016/j.scitotenv.2021.149155 (2021).
Dasari, S. et al. Photochemical degradation affects the light absorption of water-soluble brown carbon in the South Asian outflow. Sci. Adv. 5(1), eaau8066. https://doi.org/10.1126/sciadv.aau8066 (2019).
Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. B Am. Meteorol. Soc. 96(12), 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1 (2015).
Simoneit, B. R. T. et al. Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ. Sci. Technol. 38(22), 5939–5949. https://doi.org/10.1021/es0403099 (2004).
Zhu, C., Kawamura, K. & Kunwar, B. Effect of biomass burning over the western North Pacific Rim: Wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmos. Chem. Phys. 15(4), 1959–1973. https://doi.org/10.5194/acp-15-1959-2015 (2015).
Fu, P. et al. Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain. J. Geophys. Res. Atmos. 113, 19107. https://doi.org/10.1029/2008JD009900 (2008).
Zhu, C., Kawamura, K., Fukuda, Y., Mochida, M. & Iwamoto, Y. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest. Atmos. Chem. Phys. 16(11), 7497–7506. https://doi.org/10.5194/acp-16-7497-2016 (2016).
Brown, S. G., Eberly, S., Paatero, P. & Norris, G. A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 518–519, 626–635. https://doi.org/10.1016/j.scitotenv.2015.01.022 (2015).
Jiang, H. et al. Determining the Sources and Transport of Brown Carbon Using Radionuclide Tracers and Modeling. J. Geophys. Res. Atmos. 126(9), e2021JD034616. https://doi.org/10.1029/2021JD034616 (2021).
Miyakawa, T. et al. Characterization of carbonaceous aerosols in Asian outflow in the spring of 2015: Importance of non-fossil fuel sources. Atmos. Environ. 214, 116858. https://doi.org/10.1016/j.atmosenv.2019.116858 (2019).
Miyakawa, T. et al. Emission regulations altered the concentrations, origin, and formation of carbonaceous aerosols in the Tokyo Metropolitan Area. Aerosol. Air Qual. Res. 16(7), 1603–1614. https://doi.org/10.4209/aaqr.2015.11.0624 (2016).
Gustafsson, Ö. et al. Brown clouds over South Asia: Biomass or fossil fuel combustion?. Science 323(5913), 495–498. https://doi.org/10.1126/science.1164857 (2009).
Shen, G. et al. Substantial transition to clean household energy mix in rural China. Nat. Sci. Rev. 9(7), nwac50. https://doi.org/10.1093/nsr/nwac050(acccessed9/20/2024) (2022).
Du, W. et al. Biomass as residential energy in China: Current status and future perspectives. Renew. Sustain. Energy Rev. 186, 113657. https://doi.org/10.1016/j.rser.2023.113657 (2023).
Mazzoleni, L. R., Zielinska, B. & Moosmüller, H. Emissions of levoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential wood combustion. Environ. Sci. Technol. 41(7), 2115–2122. https://doi.org/10.1021/es061702c (2007).
Zhang, Y.-X. et al. Source profiles of particulate organic matters emitted from cereal straw burnings. J. Environ. Sci. 19(2), 167–175. https://doi.org/10.1016/S1001-0742(07)60027-8 (2007).
Pisso, I. et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model. Dev. 12(12), 4955–4997. https://doi.org/10.5194/gmd-12-4955-2019 (2019).
Stohl, A., Hittenberger, M. & Wotawa, G. Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmos. Environ. 32(24), 4245–4264. https://doi.org/10.1016/S1352-2310(98)00184-8 (1998).
Fang, W. et al. Increased contribution of biomass burning to haze events in Shanghai since China’s clean air actions. Commun. Earth Environ. 4(1), 310. https://doi.org/10.1038/s43247-023-00979-z (2023).
Grythe, H. et al. A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10. Geosci. Model Dev. 10(4), 1447–1466. https://doi.org/10.5194/gmd-10-1447-2017 (2017).
Takami, A., Miyoshi, T., Shimono, A. & Hatakeyama, S. Chemical composition of fine aerosol measured by AMS at Fukue Island, Japan during APEX period. Atmos. Environ. 39(27), 4913–4924. https://doi.org/10.1016/j.atmosenv.2005.04.038 (2005).
Zhu, C., Kawamura, K. & Fu, P. Seasonal variations of biogenic secondary organic aerosol tracers in Cape Hedo, Okinawa. Atmos. Environ. 130, 113–119. https://doi.org/10.1016/j.atmosenv.2015.08.069 (2016).
Zhu, C., Kawamura, K. & Kunwar, B. Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim. J. Geophys. Res. Atmos. 120(11), 5504–5523. https://doi.org/10.1002/2015jd023611 (2015).
Deng, J. et al. Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions. Atmos. Chem. Phys. 22(10), 6449–6470. https://doi.org/10.5194/acp-22-6449-2022 (2022).
Chen, Q. C. et al. Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation Emission Matrix Spectroscopy. Environ. Sci. Technol. 50(19), 10351–10360. https://doi.org/10.1021/acs.est.6b01643 (2016).
Cheng, Y. et al. Primary nature of brown carbon absorption in a frigid atmosphere with strong haze chemistry. Environ. Res. 204, 112324. https://doi.org/10.1016/j.envres.2021.112324 (2022).
Yang, L. et al. New insights into the brown carbon chromophores and formation pathways for aqueous reactions of α-dicarbonyls with amines and ammonium. Environ. Sci. Technol. 57(33), 12351–12361. https://doi.org/10.1021/acs.est.3c04133 (2023).
Dong, Z. et al. Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations. Atmos. Chem. Phys. 24(10), 5887–5905. https://doi.org/10.5194/acp-24-5887-2024 (2024).
Laskin, A., West, C. P. & Hettiyadura, A. P. S. Molecular insights into the composition, sources, and aging of atmospheric brown carbon. Chem. Soc. Rev. https://doi.org/10.1039/D3CS00609C.DOI:10.1039/D3CS00609C (2025).
Sun, X., Hu, M., Guo, S., Liu, K. & Zhou, L. 14C-Based source assessment of carbonaceous aerosols at a rural site. Atmos. Environ. 50, 36–40. https://doi.org/10.1016/j.atmosenv.2012.01.008 (2012).
Jo, D. S., Park, R. J., Lee, S., Kim, S. W. & Zhang, X. A global simulation of brown carbon: implications for photochemistry and direct radiative effect. Atmos. Chem. Phys. 16(5), 3413–3432. https://doi.org/10.5194/acp-16-3413-2016 (2016).
Saleh, R. et al. Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. J. Geophys. Res. Atmos. https://doi.org/10.1002/2015JD023697 (2015).
Xu, L. et al. Constraining light absorption of brown carbon in China and implications for aerosol direct radiative effect. Geophys Res Lett 51(16), e2024GL109861 (2024).
Sahu, L. K. et al. Anthropogenic aerosols observed in Asian continental outflow at Jeju Island, Korea, in spring 2005. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD010306 (2009).
Saleh, R. et al. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 13(15), 7683–7693. https://doi.org/10.5194/acp-13-7683-2013 (2013).
Ni, H. et al. Brown Carbon in primary and aged coal combustion emission. Environ. Sci. Technol. 55(9), 5701–5710. https://doi.org/10.1021/acs.est.0c08084 (2021).
Basnet, S. et al. Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances. Atmos. Chem. Phys. 24(5), 3197–3215. https://doi.org/10.5194/acp-24-3197-2024 (2024).
Acknowledgements
We thank Mr. Hidemitsu Chino for the assistance in field observation, Institute of Accelerator Analysis Ltd., Japan for the isotopic analyses and Murata Keisokuki Service Co., Ltd., Japan for a part of optical and chemical analyses.
Funding
This study was partly supported by the Grants-in-Aid for Scientific Research (19K20447 and 23K11401), the Arctic Challenge for Sustainability (ArCS) Project (JPMXD1300000000), ArCS II (JPMXD1420318865) and ArCS III (JPMXD1720251001), the Steel Foundation for Environmental Protection Technology (C-40-10), and the Specified Critical Technologies Research Promotion Grants from the Cabinet Office, Government of Japan.
Author information
Authors and Affiliations
Contributions
C.Z. conceived the idea. C.Z., T.M., F.T. and Y.K. conducted the observations. C.Z., T.M., B.K., D.K.D. and K.K. conducted chemical, optical and isotopic analyses. C.Z. and T.M. analyzed the data. C.Z. wrote the original manuscript along with discussions with T.M. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Zhu, C., Miyakawa, T., Taketani, F. et al. Both emissions and ageing altered brown carbon aerosols in the East Asian outflow. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35012-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-35012-8


