Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Both emissions and ageing altered brown carbon aerosols in the East Asian outflow
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 06 January 2026

Both emissions and ageing altered brown carbon aerosols in the East Asian outflow

  • Chunmao Zhu1,
  • Takuma Miyakawa1,
  • Fumikazu Taketani1,
  • Bhagawati Kunwar2 nAff3,
  • Dhananjay Kumar2,4,
  • Kimitaka Kawamura2 &
  • …
  • Yugo Kanaya1 

Scientific Reports , Article number:  (2026) Cite this article

  • 655 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate sciences
  • Environmental sciences

Abstract

Brown carbon aerosols (BrC) significantly contribute to regional climate warming in East Asia. However, their sources and atmospheric transformation remain poorly constrained due to limited observations. In this study, we clarified the seasonal dynamics of BrC and quantified the sources of relating carbonaceous components, at the gateway of the East Asian air outflow for seasonal variations. Our findings reveal that fossil fuel combustion dominates the sources of BrC containing carbonaceous components in winter, while biomass burning and local biogenic sources become more prominent in spring and summer, respectively. We provide benchmark optical properties of BrC for climate model simulations, demonstrating that the absorption coefficient and mass absorption cross-section of water-soluble fraction from land-originated air masses (0.47 Mm−1 and 0.53 m2 gC−1, respectively) are more than twice those of sea-originated air masses (0.11 Mm−1 and 0.21 m2 gC−1, respectively). Additionally, we show that BrC undergoes photochemical degradation during transport with a half-life of approximately 1.2 days. A significant reduction in BrC levels during the COVID-19 lockdown period highlights the potential of stringent emission controls to mitigate air pollution and its associated climate impacts. By shedding light on the seasonal dynamics, diverse sources, and atmospheric ageing of BrC, the study provides valuable insights for emission reduction strategies and improving BrC representation in climate models.

Similar content being viewed by others

Combined influences of sources and atmospheric bleaching on light absorption of water-soluble brown carbon aerosols

Article Open access 29 July 2023

Unprecedented shifts in aerosol pollution sources in China under a decade of clean air actions

Article Open access 01 July 2025

Increased contribution of biomass burning to haze events in Shanghai since China’s clean air actions

Article Open access 05 September 2023

Data availability

The observational optical and chemical data, input for PMF analyses and isotopic analyzed results are available at [https://doi.org/10.5281/zenodo.13831520] (https:/doi.org/https://doi.org/10.5281/zenodo.13831520). The meteorological data for FLEXPART input are available at https://rda.ucar.edu/datasets/d083002/.

References

  1. Hecobian, A. et al. Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 10(13), 5965–5977. https://doi.org/10.5194/acp-10-5965-2010 (2010).

    Google Scholar 

  2. Laskin, A., Laskin, J. & Nizkorodov, S. A. Chemistry of Atmospheric brown carbon. Chem. Rev. 115(10), 4335–4382. https://doi.org/10.1021/cr5006167 (2015).

    Google Scholar 

  3. Chakrabarty, R. K. et al. Shortwave absorption by wildfire smoke dominated by dark brown carbon. Nat. Geosci. 16(8), 683–688. https://doi.org/10.1038/s41561-023-01237-9 (2023).

    Google Scholar 

  4. Alexander, D. T. L., Crozier, P. A. & Anderson, J. R. Brown carbon spheres in East Asian outflow and their optical properties. Science 321(5890), 833–836. https://doi.org/10.1126/science.1155296 (2008).

    Google Scholar 

  5. Zeng, L. H. et al. Global Measurements of Brown Carbon and Estimated Direct Radiative Effects. Geophys Res Lett 47(13), e2020GL088747. https://doi.org/10.1029/2020GL088747 (2020).

    Google Scholar 

  6. Zhang, A. X. et al. Modeling the global radiative effect of brown carbon: A potentially larger heating source in the tropical free troposphere than black carbon. Atmos. Chem. Phys. 20(4), 1901–1920. https://doi.org/10.5194/acp-20-1901-2020 (2020).

    Google Scholar 

  7. Zhang, Y. Z. et al. Top-of-atmosphere radiative forcing affected by brown carbon in the upper troposphere. Nat. Geosci. 10(7), 486–489. https://doi.org/10.1038/Ngeo2960 (2017).

    Google Scholar 

  8. Cheng, Y. et al. Decreasing concentrations of carbonaceous aerosols in China from 2003 to 2013. Sci. Rep.-Uk 11(1), 5352. https://doi.org/10.1038/s41598-021-84429-w (2021).

    Google Scholar 

  9. Kalita, G., Kunchala, R. K., Fadnavis, S. & Kaskaoutis, D. G. Long term variability of carbonaceous aerosols over Southeast Asia via reanalysis: Association with changes in vegetation cover and biomass burning. Atmos. Res. 245, 105064. https://doi.org/10.1016/j.atmosres.2020.105064 (2020).

    Google Scholar 

  10. Yttri, K. E. et al. Trends, composition, and sources of carbonaceous aerosol at the birkenes observatory, northern Europe, 2001–2018. Atmos. Chem. Phys. 21(9), 7149–7170. https://doi.org/10.5194/acp-21-7149-2021 (2021).

    Google Scholar 

  11. Zhou, R. et al. Characteristics of wintertime carbonaceous aerosols in two typical cities in Beijing-Tianjin-Hebei region, China: Insights from multiyear measurements. Environ. Res. 216, 114469. https://doi.org/10.1016/j.envres.2022.114469 (2023).

    Google Scholar 

  12. Kaskaoutis, D. G.; Liakakou, E.; Grivas, G.; Gerasopoulos, E.; Mihalopoulos, N.; Alastuey, A.; Dulac, F.; Dumka, U. C.; Pandolfi, M.; Pikridas, M. Interannual variability and long-term trends of aerosols above the Mediterranean. In Atmospheric Chemistry in the Mediterranean Region: Volume 1-Background Information and Pollutant Distribution, Springer, 2023; pp 357–390.

  13. Li, J. et al. Scattering and absorbing aerosols in the climate system. Nat. Rev. Earth Environ. 3(6), 363–379. https://doi.org/10.1038/s43017-022-00296-7 (2022).

    Google Scholar 

  14. Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.; Péan, C.; Berger, S.; Caud, N.; Chen, Y.; Goldfarb, L.; Gomis, M. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Climate change 2021: the physical science basis 2021.

  15. Brown, H. et al. Radiative effect and climate impacts of brown carbon with the Community Atmosphere Model (CAM5). Atmos. Chem. Phys. 18(24), 17745–17768. https://doi.org/10.5194/acp-18-17745-2018 (2018).

    Google Scholar 

  16. Brown, H. et al. Biomass burning aerosols in most climate models are too absorbing. Nat. Commun. 12(1), 277. https://doi.org/10.1038/s41467-020-20482-9 (2021).

    Google Scholar 

  17. Liu, D. T., He, C. L., Schwarz, J. P. & Wang, X. Lifecycle of light-absorbing carbonaceous aerosols in the atmosphere. Npj Clim. Atmos. Sci. 3(1), 40. https://doi.org/10.1038/s41612-020-00145-8 (2020).

    Google Scholar 

  18. Fang, W. et al. Combined influences of sources and atmospheric bleaching on light absorption of water-soluble brown carbon aerosols. Npj Clim. Atmos. Sci. 6(1), 104. https://doi.org/10.1038/s41612-023-00438-8 (2023).

    Google Scholar 

  19. Kirillova, E. N., Andersson, A., Han, J., Lee, M. & Gustafsson, Ö. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China. Atmos. Chem. Phys. 14(3), 1413–1422. https://doi.org/10.5194/acp-14-1413-2014 (2014).

    Google Scholar 

  20. Wang, D. et al. Winter brown carbon over six of China’s megacities: light absorption, molecular characterization, and improved source apportionment revealed by multilayer perceptron neural network. Atmos. Chem. Phys. 22(22), 14893–14904. https://doi.org/10.5194/acp-22-14893-2022 (2022).

    Google Scholar 

  21. Zhong, M. et al. Characterizing water-soluble brown carbon in fine particles in four typical cities in northwestern China during wintertime: integrating optical properties with chemical processes. Atmos. Chem. Phys. 23(19), 12609–12630 (2023).

    Google Scholar 

  22. Yan, C. et al. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions. Atmos. Environ. 121, 4–12. https://doi.org/10.1016/j.atmosenv.2015.05.005 (2015).

    Google Scholar 

  23. Du, Z. et al. A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmos. Environ. 89, 235–241. https://doi.org/10.1016/j.atmosenv.2014.02.022 (2014).

    Google Scholar 

  24. Cheng, Y. et al. Mass absorption efficiency of elemental carbon and water-soluble organic carbon in Beijing, China. Atmos. Chem. Phys. 11(22), 11497–11510. https://doi.org/10.5194/acp-11-11497-2011 (2011).

    Google Scholar 

  25. Lei, Y. et al. Characterization of water−soluble brown carbon in atmospheric fine particles over Xi’an, China: Implication of aqueous brown carbon formation from biomass burning. Sci. Total Environ. 881, 163442. https://doi.org/10.1016/j.scitotenv.2023.163442 (2023).

    Google Scholar 

  26. Liu, X. et al. Secondary formation of atmospheric brown carbon in China Haze: Implication for an enhancing role of ammonia. Environ. Sci. Technol. 57(30), 11163–11172. https://doi.org/10.1021/acs.est.3c03948 (2023).

    Google Scholar 

  27. Forrister, H. et al. Evolution of brown carbon in wildfire plumes. Geophys. Res. Lett. 42(11), 4623–4630. https://doi.org/10.1002/2015gl063897 (2015).

    Google Scholar 

  28. Li, Q. et al. Concurrent photochemical whitening and darkening of ambient brown carbon. Atmos. Chem. Phys. 23(16), 9439–9453. https://doi.org/10.5194/acp-23-9439-2023 (2023).

    Google Scholar 

  29. Wen, H. et al. Water-soluble brown carbon in atmospheric aerosols along the transport pathway of Asian dust: Optical properties, chemical compositions, and potential sources. Sci. Total Environ. 789, 147971. https://doi.org/10.1016/j.scitotenv.2021.147971 (2021).

    Google Scholar 

  30. Kanaya, Y. et al. Rapid reduction in black carbon emissions from China: Evidence from 2009–2019 observations on Fukue Island, Japan. Atmos. Chem. Phys. 20(11), 6339–6356. https://doi.org/10.5194/acp-20-6339-2020 (2020).

    Google Scholar 

  31. Zheng, B. et al. Trends in China’s anthropogenic emissions since 2010 as the consequence of clean air actions. Atmos. Chem. Phys. 18(19), 14095–14111. https://doi.org/10.5194/acp-18-14095-2018 (2018).

    Google Scholar 

  32. Chen, Q. et al. Widespread 2013–2020 decreases and reduction challenges of organic aerosol in China. Nat. Commun. 15(1), 4465. https://doi.org/10.1038/s41467-024-48902-0FromNLMPubMed-not-MEDLINE (2024).

    Google Scholar 

  33. Updyke, K. M., Nguyen, T. B. & Nizkorodov, S. A. Formation of brown carbon via reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic precursors. Atmos. Environ. 63, 22–31. https://doi.org/10.1016/j.atmosenv.2012.09.012 (2012).

    Google Scholar 

  34. Nguyen, T. B., Laskin, A., Laskin, J. & Nizkorodov, S. A. Brown carbon formation from ketoaldehydes of biogenic monoterpenes. Faraday Discuss. 165, 473–494. https://doi.org/10.1039/c3fd00036b (2013).

    Google Scholar 

  35. Veira, A., Lasslop, G. & Kloster, S. Wildfires in a warmer climate: Emission fluxes, emission heights, and black carbon concentrations in 2090–2099. J. Geophys. Res.-Atmos. 121(7), 3195–3223. https://doi.org/10.1002/2015jd024142 (2016).

    Google Scholar 

  36. Zhu, C. et al. Sources of atmospheric black carbon and related carbonaceous components at Rishiri Island, Japan: The roles of Siberian wildfires and of crop residue burning in China. Environ. Pollut. 247, 55–63. https://doi.org/10.1016/j.envpol.2019.01.003 (2019).

    Google Scholar 

  37. Pérez-Invernón, F. J., Gordillo-Vázquez, F. J., Huntrieser, H. & Jöckel, P. Variation of lightning-ignited wildfire patterns under climate change. Nat. Commun. 14(1), 739. https://doi.org/10.1038/s41467-023-36500-5 (2023).

    Google Scholar 

  38. Bai, Z. et al. Water/methanol-insoluble brown carbon can dominate aerosol-enhanced light absorption in port cities. Environ. Sci. Technol. 54(23), 14889–14898. https://doi.org/10.1021/acs.est.0c03844 (2020).

    Google Scholar 

  39. Birch, M. E. & Cary, R. A. Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: Methodology and exposure issues. Analyst 121(9), 1183–1190. https://doi.org/10.1039/AN9962101183.DOI:10.1039/AN9962101183 (1996).

    Google Scholar 

  40. Cheng, Y. et al. The characteristics of brown carbon aerosol during winter in Beijing. Atmos. Environ. 127, 355–364. https://doi.org/10.1016/j.atmosenv.2015.12.035 (2016).

    Google Scholar 

  41. Xie, X. C. et al. Light-absorbing and fluorescent properties of atmospheric brown carbon: A case study in Nanjing, China. Chemosphere 251, 126350. https://doi.org/10.1016/j.chemosphere.2020.126350 (2020).

    Google Scholar 

  42. Phillips, S. M. & Smith, G. D. Spectroscopic comparison of water- and methanol-soluble brown carbon particulate matter. Aerosol. Sci. Tech. 51(9), 1113–1121. https://doi.org/10.1080/02786826.2017.1334109 (2017).

    Google Scholar 

  43. Zhu, C. et al. Light-absorption properties of brown carbon aerosols in the Asian outflow: Implications of a combination of filter and ground remote-sensing observations at Fukue Island, Japan. Sci. Total Environ. 797, 149155. https://doi.org/10.1016/j.scitotenv.2021.149155 (2021).

    Google Scholar 

  44. Dasari, S. et al. Photochemical degradation affects the light absorption of water-soluble brown carbon in the South Asian outflow. Sci. Adv. 5(1), eaau8066. https://doi.org/10.1126/sciadv.aau8066 (2019).

    Google Scholar 

  45. Stein, A. F. et al. NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. B Am. Meteorol. Soc. 96(12), 2059–2077. https://doi.org/10.1175/BAMS-D-14-00110.1 (2015).

    Google Scholar 

  46. Simoneit, B. R. T. et al. Sugars dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ. Sci. Technol. 38(22), 5939–5949. https://doi.org/10.1021/es0403099 (2004).

    Google Scholar 

  47. Zhu, C., Kawamura, K. & Kunwar, B. Effect of biomass burning over the western North Pacific Rim: Wintertime maxima of anhydrosugars in ambient aerosols from Okinawa. Atmos. Chem. Phys. 15(4), 1959–1973. https://doi.org/10.5194/acp-15-1959-2015 (2015).

    Google Scholar 

  48. Fu, P. et al. Organic molecular compositions and temporal variations of summertime mountain aerosols over Mt. Tai, North China Plain. J. Geophys. Res. Atmos. 113, 19107. https://doi.org/10.1029/2008JD009900 (2008).

    Google Scholar 

  49. Zhu, C., Kawamura, K., Fukuda, Y., Mochida, M. & Iwamoto, Y. Fungal spores overwhelm biogenic organic aerosols in a midlatitudinal forest. Atmos. Chem. Phys. 16(11), 7497–7506. https://doi.org/10.5194/acp-16-7497-2016 (2016).

    Google Scholar 

  50. Brown, S. G., Eberly, S., Paatero, P. & Norris, G. A. Methods for estimating uncertainty in PMF solutions: Examples with ambient air and water quality data and guidance on reporting PMF results. Sci. Total Environ. 518–519, 626–635. https://doi.org/10.1016/j.scitotenv.2015.01.022 (2015).

    Google Scholar 

  51. Jiang, H. et al. Determining the Sources and Transport of Brown Carbon Using Radionuclide Tracers and Modeling. J. Geophys. Res. Atmos. 126(9), e2021JD034616. https://doi.org/10.1029/2021JD034616 (2021).

    Google Scholar 

  52. Miyakawa, T. et al. Characterization of carbonaceous aerosols in Asian outflow in the spring of 2015: Importance of non-fossil fuel sources. Atmos. Environ. 214, 116858. https://doi.org/10.1016/j.atmosenv.2019.116858 (2019).

    Google Scholar 

  53. Miyakawa, T. et al. Emission regulations altered the concentrations, origin, and formation of carbonaceous aerosols in the Tokyo Metropolitan Area. Aerosol. Air Qual. Res. 16(7), 1603–1614. https://doi.org/10.4209/aaqr.2015.11.0624 (2016).

    Google Scholar 

  54. Gustafsson, Ö. et al. Brown clouds over South Asia: Biomass or fossil fuel combustion?. Science 323(5913), 495–498. https://doi.org/10.1126/science.1164857 (2009).

    Google Scholar 

  55. Shen, G. et al. Substantial transition to clean household energy mix in rural China. Nat. Sci. Rev. 9(7), nwac50. https://doi.org/10.1093/nsr/nwac050(acccessed9/20/2024) (2022).

    Google Scholar 

  56. Du, W. et al. Biomass as residential energy in China: Current status and future perspectives. Renew. Sustain. Energy Rev. 186, 113657. https://doi.org/10.1016/j.rser.2023.113657 (2023).

    Google Scholar 

  57. Mazzoleni, L. R., Zielinska, B. & Moosmüller, H. Emissions of levoglucosan, methoxy phenols, and organic acids from prescribed burns, laboratory combustion of wildland fuels, and residential wood combustion. Environ. Sci. Technol. 41(7), 2115–2122. https://doi.org/10.1021/es061702c (2007).

    Google Scholar 

  58. Zhang, Y.-X. et al. Source profiles of particulate organic matters emitted from cereal straw burnings. J. Environ. Sci. 19(2), 167–175. https://doi.org/10.1016/S1001-0742(07)60027-8 (2007).

    Google Scholar 

  59. Pisso, I. et al. The Lagrangian particle dispersion model FLEXPART version 10.4. Geosci. Model. Dev. 12(12), 4955–4997. https://doi.org/10.5194/gmd-12-4955-2019 (2019).

    Google Scholar 

  60. Stohl, A., Hittenberger, M. & Wotawa, G. Validation of the Lagrangian particle dispersion model FLEXPART against large-scale tracer experiment data. Atmos. Environ. 32(24), 4245–4264. https://doi.org/10.1016/S1352-2310(98)00184-8 (1998).

    Google Scholar 

  61. Fang, W. et al. Increased contribution of biomass burning to haze events in Shanghai since China’s clean air actions. Commun. Earth Environ. 4(1), 310. https://doi.org/10.1038/s43247-023-00979-z (2023).

    Google Scholar 

  62. Grythe, H. et al. A new aerosol wet removal scheme for the Lagrangian particle model FLEXPART v10. Geosci. Model Dev. 10(4), 1447–1466. https://doi.org/10.5194/gmd-10-1447-2017 (2017).

    Google Scholar 

  63. Takami, A., Miyoshi, T., Shimono, A. & Hatakeyama, S. Chemical composition of fine aerosol measured by AMS at Fukue Island, Japan during APEX period. Atmos. Environ. 39(27), 4913–4924. https://doi.org/10.1016/j.atmosenv.2005.04.038 (2005).

    Google Scholar 

  64. Zhu, C., Kawamura, K. & Fu, P. Seasonal variations of biogenic secondary organic aerosol tracers in Cape Hedo, Okinawa. Atmos. Environ. 130, 113–119. https://doi.org/10.1016/j.atmosenv.2015.08.069 (2016).

    Google Scholar 

  65. Zhu, C., Kawamura, K. & Kunwar, B. Organic tracers of primary biological aerosol particles at subtropical Okinawa Island in the western North Pacific Rim. J. Geophys. Res. Atmos. 120(11), 5504–5523. https://doi.org/10.1002/2015jd023611 (2015).

    Google Scholar 

  66. Deng, J. et al. Measurement report: Optical properties and sources of water-soluble brown carbon in Tianjin, North China – insights from organic molecular compositions. Atmos. Chem. Phys. 22(10), 6449–6470. https://doi.org/10.5194/acp-22-6449-2022 (2022).

    Google Scholar 

  67. Chen, Q. C. et al. Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation Emission Matrix Spectroscopy. Environ. Sci. Technol. 50(19), 10351–10360. https://doi.org/10.1021/acs.est.6b01643 (2016).

    Google Scholar 

  68. Cheng, Y. et al. Primary nature of brown carbon absorption in a frigid atmosphere with strong haze chemistry. Environ. Res. 204, 112324. https://doi.org/10.1016/j.envres.2021.112324 (2022).

    Google Scholar 

  69. Yang, L. et al. New insights into the brown carbon chromophores and formation pathways for aqueous reactions of α-dicarbonyls with amines and ammonium. Environ. Sci. Technol. 57(33), 12351–12361. https://doi.org/10.1021/acs.est.3c04133 (2023).

    Google Scholar 

  70. Dong, Z. et al. Measurement report: Optical characterization, seasonality, and sources of brown carbon in fine aerosols from Tianjin, North China: year-round observations. Atmos. Chem. Phys. 24(10), 5887–5905. https://doi.org/10.5194/acp-24-5887-2024 (2024).

    Google Scholar 

  71. Laskin, A., West, C. P. & Hettiyadura, A. P. S. Molecular insights into the composition, sources, and aging of atmospheric brown carbon. Chem. Soc. Rev. https://doi.org/10.1039/D3CS00609C.DOI:10.1039/D3CS00609C (2025).

    Google Scholar 

  72. Sun, X., Hu, M., Guo, S., Liu, K. & Zhou, L. 14C-Based source assessment of carbonaceous aerosols at a rural site. Atmos. Environ. 50, 36–40. https://doi.org/10.1016/j.atmosenv.2012.01.008 (2012).

    Google Scholar 

  73. Jo, D. S., Park, R. J., Lee, S., Kim, S. W. & Zhang, X. A global simulation of brown carbon: implications for photochemistry and direct radiative effect. Atmos. Chem. Phys. 16(5), 3413–3432. https://doi.org/10.5194/acp-16-3413-2016 (2016).

    Google Scholar 

  74. Saleh, R. et al. Contribution of brown carbon and lensing to the direct radiative effect of carbonaceous aerosols from biomass and biofuel burning emissions. J. Geophys. Res. Atmos. https://doi.org/10.1002/2015JD023697 (2015).

    Google Scholar 

  75. Xu, L. et al. Constraining light absorption of brown carbon in China and implications for aerosol direct radiative effect. Geophys Res Lett 51(16), e2024GL109861 (2024).

    Google Scholar 

  76. Sahu, L. K. et al. Anthropogenic aerosols observed in Asian continental outflow at Jeju Island, Korea, in spring 2005. J. Geophys. Res. Atmos. https://doi.org/10.1029/2008JD010306 (2009).

    Google Scholar 

  77. Saleh, R. et al. Absorptivity of brown carbon in fresh and photo-chemically aged biomass-burning emissions. Atmos. Chem. Phys. 13(15), 7683–7693. https://doi.org/10.5194/acp-13-7683-2013 (2013).

    Google Scholar 

  78. Ni, H. et al. Brown Carbon in primary and aged coal combustion emission. Environ. Sci. Technol. 55(9), 5701–5710. https://doi.org/10.1021/acs.est.0c08084 (2021).

    Google Scholar 

  79. Basnet, S. et al. Contribution of brown carbon to light absorption in emissions of European residential biomass combustion appliances. Atmos. Chem. Phys. 24(5), 3197–3215. https://doi.org/10.5194/acp-24-3197-2024 (2024).

    Google Scholar 

Download references

Acknowledgements

We thank Mr. Hidemitsu Chino for the assistance in field observation, Institute of Accelerator Analysis Ltd., Japan for the isotopic analyses and Murata Keisokuki Service Co., Ltd., Japan for a part of optical and chemical analyses.

Funding

This study was partly supported by the Grants-in-Aid for Scientific Research (19K20447 and 23K11401), the Arctic Challenge for Sustainability (ArCS) Project (JPMXD1300000000), ArCS II (JPMXD1420318865) and ArCS III (JPMXD1720251001), the Steel Foundation for Environmental Protection Technology (C-40-10), and the Specified Critical Technologies Research Promotion Grants from the Cabinet Office, Government of Japan.

Author information

Author notes
  1. Bhagawati Kunwar

    Present address: Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, 4648601, Japan

Authors and Affiliations

  1. Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Research Institute for Global Change, Yokohama, 2360001, Japan

    Chunmao Zhu, Takuma Miyakawa, Fumikazu Taketani & Yugo Kanaya

  2. Chubu Institute for Advanced Studies, Chubu University, Kasugai, 4878501, Japan

    Bhagawati Kunwar, Dhananjay Kumar & Kimitaka Kawamura

  3. Commission for Air Quality Management in National Capital Region and Adjoining Areas, Ministry of Environment, Forest and Climate Change, New Delhi 110001, India

    Dhananjay Kumar

Authors
  1. Chunmao Zhu
    View author publications

    Search author on:PubMed Google Scholar

  2. Takuma Miyakawa
    View author publications

    Search author on:PubMed Google Scholar

  3. Fumikazu Taketani
    View author publications

    Search author on:PubMed Google Scholar

  4. Bhagawati Kunwar
    View author publications

    Search author on:PubMed Google Scholar

  5. Dhananjay Kumar
    View author publications

    Search author on:PubMed Google Scholar

  6. Kimitaka Kawamura
    View author publications

    Search author on:PubMed Google Scholar

  7. Yugo Kanaya
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.Z. conceived the idea. C.Z., T.M., F.T. and Y.K. conducted the observations. C.Z., T.M., B.K., D.K.D. and K.K. conducted chemical, optical and isotopic analyses. C.Z. and T.M. analyzed the data. C.Z. wrote the original manuscript along with discussions with T.M. The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Chunmao Zhu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, C., Miyakawa, T., Taketani, F. et al. Both emissions and ageing altered brown carbon aerosols in the East Asian outflow. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35012-8

Download citation

  • Received: 03 October 2025

  • Accepted: 01 January 2026

  • Published: 06 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35012-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Brown carbon aerosols
  • Light-absorption properties
  • Molecular tracers
  • Radiocarbon
  • Fossil fuel combustion
  • Biomass burning
  • East Asian outflow
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene