Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
CD13 activation assembles phosphoinositide (PI) signaling complexes to regulate the actin cytoskeleton
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 January 2026

CD13 activation assembles phosphoinositide (PI) signaling complexes to regulate the actin cytoskeleton

  • Emily Meredith1,
  • Brian Aguilera1,
  • Riya Sharma1,
  • Nikhil Thimma1,
  • Fraser McGurk1,
  • Pengyu Zong2,3,
  • Lixia Yue2,3,
  • Linda H. Shapiro1,3 &
  • …
  • Mallika Ghosh1,3 

Scientific Reports , Article number:  (2026) Cite this article

  • 694 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Actin
  • Cell biology
  • Cell signalling
  • Cytoskeleton

Abstract

Activation of transmembrane CD13 enables diverse cellular processes such as cell–cell and cell–matrix adhesion, endocytosis, and recycling of cell surface proteins by assembling and tethering protein complexes at the plasma membrane. Here, we identify a novel CD13-dependent protein assembly that regulates phosphoinositide (PI) signal transduction to impact actin dynamics and induce cell protrusions capable of propagating signals to distant cells. In response to cellular stress, the CD13-expressing human Kaposi’s sarcoma-derived cell line (KS1767, KSCs) formed elongated protrusions that extend above the substrate and link non-adjacent cells, which is significantly diminished in CD13KO KSCs. Activation of CD13 with stimulating mAbs markedly induced protrusion formation with a striking accumulation of CD13 and actin at the base. Further, these membrane-delimited bridges in WT KSCs can transfer Ca2+ signals between connected cells via Connexin 43+ gap junctions. Mechanistically, CD13-mediated protrusion formation requires activation of CD13, Src, FAK and Cdc42 to tether the IQGAP1 and ARF6 complex at the membrane. This activates phosphatidylinositol-4-phosphate-5-kinase (PI5K) to increase local phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) levels, promoting actin-polymerization and membrane protrusion. Therefore, CD13 is a novel molecular PIP regulator, modulating signal transduction and downstream cellular processes, including actin cytoskeleton dynamics and membrane organization to facilitate intercellular communication.

Similar content being viewed by others

The SKBR3 cell-membrane proteome reveals telltales of aberrant cancer cell proliferation and targets for precision medicine applications

Article Open access 27 June 2022

JK-1, a useful erythroleukemic cell line model to study a controlled erythroid differentiation from progenitors to terminal erythropoiesis

Article Open access 29 October 2024

Intercellular adhesion boots collective cell migration through elevated membrane tension

Article Open access 12 February 2025

Data availability

The datasets generated and analyzed during the current study are available from the corresponding authors upon reasonable request.

References

  1. Bezanilla, M., Gladfelter, A. S., Kovar, D. R. & Lee, W. L. Cytoskeletal dynamics: A view from the membrane. J. Cell Biol. 209, 329–337. https://doi.org/10.1083/jcb.201502062 (2015).

    Google Scholar 

  2. Belian, S., Korenkova, O. & Zurzolo, C. Actin-based protrusions at a glance. J. Cell Sci. https://doi.org/10.1242/jcs.261156 (2023).

    Google Scholar 

  3. Yamashita, Y. M., Inaba, M. & Buszczak, M. specialized intercellular communications via cytonemes and nanotubes. Annu. Rev. Cell Dev. Biol. 34, 59–84. https://doi.org/10.1146/annurev-cellbio-100617-062932 (2018).

    Google Scholar 

  4. Delage, E. et al. Differential identity of filopodia and tunneling nanotubes revealed by the opposite functions of actin regulatory complexes. Sci. Rep. 6, 39632. https://doi.org/10.1038/srep39632 (2016).

    Google Scholar 

  5. Schiller, C. et al. LST1 promotes the assembly of a molecular machinery responsible for tunneling nanotube formation. J. Cell Sci. 126, 767–777. https://doi.org/10.1242/jcs.114033 (2013).

    Google Scholar 

  6. D’Aloia, A. et al. RalGPS2 interacts with Akt and PDK1 promoting tunneling nanotubes formation in bladder cancer and kidney cells microenvironment. Cancers https://doi.org/10.3390/cancers13246330 (2021).

    Google Scholar 

  7. Grabowska, W. et al. IQGAP1-dysfunction leads to induction of senescence in human vascular smooth muscle cells. Mech. Ageing Dev. 190, 111295. https://doi.org/10.1016/j.mad.2020.111295 (2020).

    Google Scholar 

  8. Hase, K. et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell. Biol. 11, 1427–1432. https://doi.org/10.1038/ncb1990 (2009).

    Google Scholar 

  9. Barutta, F. et al. Protective role of the M-Sec-tunneling nanotube system in podocytes. J. Am. Soc. Nephrol. 32, 1114–1130. https://doi.org/10.1681/ASN.2020071076 (2021).

    Google Scholar 

  10. Wenk, M. R. The emerging field of lipidomics. Nat. Rev. Drug Discovery 4, 594–610. https://doi.org/10.1038/nrd1776 (2005).

    Google Scholar 

  11. Simons, K. & Sampaio, J. L. Membrane organization and lipid rafts. Cold Spring Harb. Perspect. Biol. 3, a004697. https://doi.org/10.1101/cshperspect.a004697 (2011).

    Google Scholar 

  12. Delage, E. & Zurzolo, C. Exploring the role of lipids in intercellular conduits: Breakthroughs in the pipeline. Front. Plant Sci. 4, 504. https://doi.org/10.3389/fpls.2013.00504 (2013).

    Google Scholar 

  13. Takenawa, T. & Itoh, T. Phosphoinositides, key molecules for regulation of actin cytoskeletal organization and membrane traffic from the plasma membrane. Biochim Biophys Acta 1533, 190–206. https://doi.org/10.1016/s1388-1981(01)00165-2 (2001).

    Google Scholar 

  14. Regen, S. L. The origin of lipid rafts. Biochemistry 59, 4617–4621. https://doi.org/10.1021/acs.biochem.0c00851 (2020).

    Google Scholar 

  15. Chichili, G. R. & Rodgers, W. Cytoskeleton-membrane interactions in membrane raft structure. Cell. Mol. Life Sci. CMLS 66, 2319–2328. https://doi.org/10.1007/s00018-009-0022-6 (2009).

    Google Scholar 

  16. Saarikangas, J., Zhao, H. & Lappalainen, P. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol. Rev. 90, 259–289. https://doi.org/10.1152/physrev.00036.2009 (2010).

    Google Scholar 

  17. Caviglia, S. & Ober, E. A. Non-conventional protrusions: The diversity of cell interactions at short and long distance. Curr. Opin. Cell. Biol. 54, 106–113. https://doi.org/10.1016/j.ceb.2018.05.013 (2018).

    Google Scholar 

  18. Naphade, S. et al. Brief reports: Lysosomal cross-correction by hematopoietic stem cell-derived macrophages via tunneling nanotubes. Stem Cells 33, 301–309. https://doi.org/10.1002/stem.1835 (2015).

    Google Scholar 

  19. Rahman, M. M. et al. CD13 regulates anchorage and differentiation of the skeletal muscle satellite stem cell population in ischemic injury. Stem Cells 32, 1564–1577. https://doi.org/10.1002/stem.1610 (2014).

    Google Scholar 

  20. Rahman, M. M. et al. CD13 promotes mesenchymal stem cell-mediated regeneration of ischemic muscle. Front. Physiol. 4, 402. https://doi.org/10.3389/fphys.2013.00402 (2014).

    Google Scholar 

  21. Bhagwat, S. V. et al. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood 97, 652–659 (2001).

    Google Scholar 

  22. Pasqualini, R. et al. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 60, 722–727 (2000).

    Google Scholar 

  23. Petrovic, N. et al. CD13/APN regulates endothelial invasion and filopodia formation. Blood 110, 142–150. https://doi.org/10.1182/blood-2006-02-002931 (2007).

    Google Scholar 

  24. Ghosh, M., Subramani, J., Rahman, M. M. & Shapiro, L. H. CD13 restricts TLR4 endocytic signal transduction in inflammation. J. Immunol. 194, 4466–4476. https://doi.org/10.4049/jimmunol.1403133 (2015).

    Google Scholar 

  25. Ghosh, M. et al. Molecular mechanisms regulating CD13-mediated adhesion. Immunology 142, 636–647. https://doi.org/10.1111/imm.12279 (2014).

    Google Scholar 

  26. Pereira, F. E. et al. CD13 is essential for inflammatory trafficking and infarct healing following permanent coronary artery occlusion in mice. Cardiovasc. Res. 100, 74–83. https://doi.org/10.1093/cvr/cvt155[pii] (2013).

    Google Scholar 

  27. Mina-Osorio, P., Shapiro, L. H. & Ortega, E. CD13 in cell adhesion: aminopeptidase N (CD13) mediates homotypic aggregation of monocytic cells. J. Leukoc. Biol. 79, 719–730 (2006).

    Google Scholar 

  28. Subramani, J. et al. Tyrosine phosphorylation of CD13 regulates inflammatory cell-cell adhesion and monocyte trafficking. J. Immunol. 191, 3905–3912. https://doi.org/10.4049/jimmunol.1301348 (2013).

    Google Scholar 

  29. Ghosh, M. et al. CD13 tethers the IQGAP1-ARF6-EFA6 complex to the plasma membrane to promote ARF6 activation, beta1 integrin recycling, and cell migration. Sci. Signal https://doi.org/10.1126/scisignal.aav5938 (2019).

    Google Scholar 

  30. Ghosh, M., Kelava, T., Madunic, I. V., Kalajzic, I. & Shapiro, L. H. CD13 is a critical regulator of cell-cell fusion in osteoclastogenesis. Sci. Rep. 11, 10736. https://doi.org/10.1038/s41598-021-90271-x (2021).

    Google Scholar 

  31. Ghosh, M. & Shapiro, L. H. CD13 regulation of membrane recycling: Implications for cancer dissemination. Mol. Cell. Oncol. https://doi.org/10.1080/23723556.2019.1648024 (2019).

    Google Scholar 

  32. Mina-Osorio, P. et al. CD13 is a novel mediator of monocytic/endothelial cell adhesion. J Leukoc Biol 84, 448–459 (2008).

    Google Scholar 

  33. Dubois, F. et al. A role for RASSF1A in tunneling nanotube formation between cells through GEFH1/Rab11 pathway control. Cell Commun. Signal 16, 66. https://doi.org/10.1186/s12964-018-0276-4 (2018).

    Google Scholar 

  34. Desir, S. et al. Chemotherapy-induced tunneling nanotubes mediate intercellular drug efflux in pancreatic cancer. Sci. Rep. 8, 9484. https://doi.org/10.1038/s41598-018-27649-x (2018).

    Google Scholar 

  35. Resnik, N. et al. Molecular, morphological and functional properties of tunnelling nanotubes between normal and cancer urothelial cells: New insights from the in vitro model mimicking the situation after surgical removal of the urothelial tumor. Front. Cell Dev. Biol. 10, 934684. https://doi.org/10.3389/fcell.2022.934684 (2022).

    Google Scholar 

  36. Florey, O., Durgan, J. & Muller, W. Phosphorylation of leukocyte PECAM and its association with detergent-resistant membranes regulate transendothelial migration. J. Immunol. 185, 1878–1886. https://doi.org/10.4049/jimmunol.1001305 (2010).

    Google Scholar 

  37. Liu, G. et al. ICAM-1-activated Src and eNOS signaling increase endothelial cell surface PECAM-1 adhesivity and neutrophil transmigration. Blood 120, 1942–1952. https://doi.org/10.1182/blood-2011-12-397430 (2012).

    Google Scholar 

  38. Berman, M. E. & Muller, W. A. Ligation of platelet/endothelial cell adhesion molecule 1 (PECAM-1/CD31) on monocytes and neutrophils increases binding capacity of leukocyte CR3 (CD11b/CD18). J. Immunol. 154, 299–307 (1995).

    Google Scholar 

  39. Ghosh, M., McAuliffe, B., Subramani, J., Basu, S. & Shapiro, L. H. CD13 regulates dendritic cell cross-presentation and T cell responses by inhibiting receptor-mediated antigen uptake. J. Immunol. 188, 5489–5499. https://doi.org/10.4049/jimmunol.1103490 (2012).

    Google Scholar 

  40. Saenz-de-Santa-Maria, I. et al. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget 8, 20939–20960. https://doi.org/10.18632/oncotarget.15467 (2017).

    Google Scholar 

  41. Tishchenko, A. et al. Cx43 and associated cell signaling pathways regulate tunneling nanotubes in breast cancer cells. Cancers https://doi.org/10.3390/cancers12102798 (2020).

    Google Scholar 

  42. Bhat, S. et al. Rab35 and its effectors promote formation of tunneling nanotubes in neuronal cells. Sci. Rep. 10, 16803. https://doi.org/10.1038/s41598-020-74013-z (2020).

    Google Scholar 

  43. Rohatgi, R. et al. The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly. Cell 97, 221–231. https://doi.org/10.1016/s0092-8674(00)80732-1 (1999).

    Google Scholar 

  44. Sugihara, K. et al. The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat. Cell Biol. 4, 73–78. https://doi.org/10.1038/ncb720 (2002).

    Google Scholar 

  45. Hanna, S. J. et al. The role of Rho-GTPases and actin polymerization during macrophage tunneling nanotube biogenesis. Sci. Rep. 7, 8547. https://doi.org/10.1038/s41598-017-08950-7 (2017).

    Google Scholar 

  46. Kimura, S. et al. Distinct roles for the N- and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation. Sci. Rep. 6, 33548. https://doi.org/10.1038/srep33548 (2016).

    Google Scholar 

  47. Mandal, K. Review of PIP2 in cellular signaling, functions and diseases. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21218342 (2020).

    Google Scholar 

  48. Brown, F. D., Rozelle, A. L., Yin, H. L., Balla, T. & Donaldson, J. G. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell. Biol. 154, 1007–1017. https://doi.org/10.1083/jcb.200103107 (2001).

    Google Scholar 

  49. Varnai, P. & Balla, T. Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J. Cell. Biol. 143, 501–510. https://doi.org/10.1083/jcb.143.2.501 (1998).

    Google Scholar 

  50. Holz, R. W. et al. A pleckstrin homology domain specific for phosphatidylinositol 4,5-bisphosphate (PtdIns-4,5–P2) and fused to green fluorescent protein identifies plasma membrane PtdIns-4,5–P2 as being important in exocytosis. J. Biol. Chem. 275, 17878–17885. https://doi.org/10.1074/jbc.M000925200 (2000).

    Google Scholar 

  51. Wang, X. & Gerdes, H. H. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22, 1181–1191. https://doi.org/10.1038/cdd.2014.211 (2015).

    Google Scholar 

  52. Alarcon-Martinez, L. et al. Interpericyte tunnelling nanotubes regulate neurovascular coupling. Nature 585, 91–95. https://doi.org/10.1038/s41586-020-2589-x (2020).

    Google Scholar 

  53. Lock, J. T., Parker, I. & Smith, I. F. Communication of Ca(2+) signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions. Cell Calcium 60, 266–272. https://doi.org/10.1016/j.ceca.2016.06.004 (2016).

    Google Scholar 

  54. Smith, I. F., Shuai, J. & Parker, I. Active generation and propagation of Ca2+ signals within tunneling membrane nanotubes. Biophys. J . 100, L37-39. https://doi.org/10.1016/j.bpj.2011.03.007 (2011).

    Google Scholar 

  55. Wang, X., Veruki, M. L., Bukoreshtliev, N. V., Hartveit, E. & Gerdes, H. H. Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. Proc. Natl. Acad. Sci. U S A 107, 17194–17199. https://doi.org/10.1073/pnas.1006785107 (2010).

    Google Scholar 

  56. Watkins, S. C. & Salter, R. D. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23, 309–318. https://doi.org/10.1016/j.immuni.2005.08.009 (2005).

    Google Scholar 

  57. Onfelt, B., Nedvetzki, S., Yanagi, K. & Davis, D. M. Cutting edge: Membrane nanotubes connect immune cells. J. Immunol. 173, 1511–1513 (2004).

    Google Scholar 

  58. Johnson, L. A. et al. Dendritic cells enter lymph vessels by hyaluronan-mediated docking to the endothelial receptor LYVE-1. Nat. Immunol. 18, 762–770. https://doi.org/10.1038/ni.3750 (2017).

    Google Scholar 

  59. Vestweber, D., Zeuschner, D., Rottner, K. & Schnoor, M. Cortactin regulates the activity of small GTPases and ICAM-1 clustering in endothelium: Implications for the formation of docking structures. Tissue Barriers 1, e23862. https://doi.org/10.4161/tisb.23862 (2013).

    Google Scholar 

  60. Wittchen, E. S. Endothelial signaling in paracellular and transcellular leukocyte transmigration. Front. Biosci. (Landmark edition) 14, 2522–2545 (2009).

    Google Scholar 

  61. Pergu, R. et al. The chaperone ERp29 is required for tunneling nanotube formation by stabilizing MSec. J. Biol. Chem. 294, 7177–7193. https://doi.org/10.1074/jbc.RA118.005659 (2019).

    Google Scholar 

  62. Zhu, S. et al. Rab11a-Rab8a cascade regulates the formation of tunneling nanotubes through vesicle recycling. J. Cell Sci. https://doi.org/10.1242/jcs.215889 (2018).

    Google Scholar 

  63. Gousset, K., Marzo, L., Commere, P. H. & Zurzolo, C. Myo10 is a key regulator of TNT formation in neuronal cells. J. Cell Sci. 126, 4424–4435. https://doi.org/10.1242/jcs.129239 (2013).

    Google Scholar 

  64. Reichert, D. et al. Tunneling nanotubes mediate the transfer of stem cell marker CD133 between hematopoietic progenitor cells. Exp. Hematol. 44, 1092–1112. https://doi.org/10.1016/j.exphem.2016.07.006 (2016).

    Google Scholar 

  65. Pawar, A. et al. Ral-Arf6 crosstalk regulates Ral dependent exocyst trafficking and anchorage independent growth signalling. Cell Signal 28, 1225–1236. https://doi.org/10.1016/j.cellsig.2016.05.023 (2016).

    Google Scholar 

  66. Ghosh, M. et al. The implant-induced foreign body response is limited by CD13-dependent regulation of ubiquitination of fusogenic proteins. J. Immunol. 212, 663–676. https://doi.org/10.4049/jimmunol.2300688 (2024).

    Google Scholar 

  67. Carnicer-Lombarte, A., Chen, S. T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524. https://doi.org/10.3389/fbioe.2021.622524 (2021).

    Google Scholar 

  68. Ellerby, H. M. et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat. Med. 5, 1032–1038 (1999).

    Google Scholar 

  69. Zong, P. et al. Functional coupling of TRPM2 and extrasynaptic NMDARs exacerbates excitotoxicity in ischemic brain injury. Neuron 110, 1944–1958. https://doi.org/10.1016/j.neuron.2022.03.021 (2022).

    Google Scholar 

Download references

Acknowledgements

We thank Chris Stoddard at Human Genome Editing Core at UConn Health for the generation of CRISPR cell lines. We also thank Susan Staurovsky at Cell Analysis and Modeling Core at UConn Health for technical help.

Funding

This work was supported by National Institutes of Health grant R21AI15 and Research Excellence grant, University of Connecticut to LHS and MG.

Author information

Authors and Affiliations

  1. Center for Vascular Biology, University of Connecticut Medical School, Farmington, CT, 06032, USA

    Emily Meredith, Brian Aguilera, Riya Sharma, Nikhil Thimma, Fraser McGurk, Linda H. Shapiro & Mallika Ghosh

  2. Calhoun Cardiology Center, University of Connecticut Medical School, Farmington, CT, 06032, USA

    Pengyu Zong & Lixia Yue

  3. Department of Cell Biology, University of Connecticut Medical School, Farmington, CT, 06032, USA

    Pengyu Zong, Lixia Yue, Linda H. Shapiro & Mallika Ghosh

Authors
  1. Emily Meredith
    View author publications

    Search author on:PubMed Google Scholar

  2. Brian Aguilera
    View author publications

    Search author on:PubMed Google Scholar

  3. Riya Sharma
    View author publications

    Search author on:PubMed Google Scholar

  4. Nikhil Thimma
    View author publications

    Search author on:PubMed Google Scholar

  5. Fraser McGurk
    View author publications

    Search author on:PubMed Google Scholar

  6. Pengyu Zong
    View author publications

    Search author on:PubMed Google Scholar

  7. Lixia Yue
    View author publications

    Search author on:PubMed Google Scholar

  8. Linda H. Shapiro
    View author publications

    Search author on:PubMed Google Scholar

  9. Mallika Ghosh
    View author publications

    Search author on:PubMed Google Scholar

Contributions

EM, PZ, LY, LHS and MG designed the research plan. EM, BA, RS, NT, FM, PZ and MG conducted experiments and analyzed data. EM, LHS and MG wrote the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Linda H. Shapiro or Mallika Ghosh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meredith, E., Aguilera, B., Sharma, R. et al. CD13 activation assembles phosphoinositide (PI) signaling complexes to regulate the actin cytoskeleton. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35022-6

Download citation

  • Received: 11 April 2025

  • Accepted: 01 January 2026

  • Published: 14 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35022-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing