Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Hepatitis virus-associated B cell non-Hodgkin’s lymphoma involves dysregulated epigenetic and RNA-mediated regulatory gene expression and altered snoRNA transcription
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 January 2026

Hepatitis virus-associated B cell non-Hodgkin’s lymphoma involves dysregulated epigenetic and RNA-mediated regulatory gene expression and altered snoRNA transcription

  • Amanda N. Henning1,
  • Myagmarjav Budeebazar2,3,
  • Delgerbat Boldbaatar3,
  • Dahgwahdorj Yagaanbuyant3,
  • Davaadorj Duger2,
  • Khishigjargal Batsukh4,
  • Samantha Muccilli1,
  • Jordan Pardoe1,
  • Lara Perinet1,
  • Olivia Conway1,
  • Darryl Owusu-Ansah1,
  • Kobe Robichaux1,
  • Ryan Baumann1,
  • Harvey J. Alter1,
  • Naranjargal Dashdorj3,5 &
  • …
  • Valeria De Giorgi1 

Scientific Reports , Article number:  (2026) Cite this article

  • 1271 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • B cells
  • Gene expression
  • Hepatitis B virus
  • Lymphoma

Abstract

Infection with HBV and its satellite virus HDV remain a significant global health issue due to their involvement in hepatic and extrahepatic diseases, including B cell non-Hodgkin’s lymphoma (BNHL). Clinical and epidemiological evidence support a causal role for HBV in BNHL development, although mechanistic insight is lacking and the role of HDV infection in this process is unknown. To help elucidate viral drivers of B cell transformation, we performed RNA-sequencing on peripheral B cells from patients with HBV mono-infection, HBV/HDV co-infection, HBV/HDV-associated BNHL, BNHL without viral infection, and healthy donors. In this way, we sought to identify unique and shared transcriptional profiles associated with viral infection and transformation. Our data suggest dysregulated epigenetic and miRNA-mediated regulatory gene expression may be a potential common pathway for lymphomagenesis among viral- and non-viral-associated lymphoma. We also observed wide-spread upregulation of snoRNAs in B cells from virally infected patients, supporting a role for these non-coding RNAs in viral infection and, potentially, viral-associated lymphomagenesis. These results have identified novel areas for future functional studies on the effect of HBV and HDV infection on B cell activity and present additional therapeutic strategies that may benefit both viral- and non-viral associated BNHL.

Similar content being viewed by others

Unraveling the role of hepatitis B virus DNA integration in B-cell lymphomagenesis

Article 19 July 2024

Episomal and integrated hepatitis B transcriptome mapping uncovers heterogeneity with the potential for drug-resistance

Article Open access 26 September 2025

Immunobiology and pathogenesis of hepatitis B virus infection

Article 17 May 2021

Data availability

The datasets generated and analyzed during the current study are available in the GEO repository, [https://www.ncbi.nlm.nih.gov/geo/](https:/www.ncbi.nlm.nih.gov/geo), under accession number GSE279755. Additional information and files are available on reasonable request.

References

  1. Global hepatitis report 2024: action for access in low- and middle-income countries. (World Health Organization, Geneva, 2024).

  2. Mentha, N., Clement, S., Negro, F. & Alfaiate, D. A review on hepatitis D: From virology to new therapies. J. Adv. Res. 17, 3–15. https://doi.org/10.1016/j.jare.2019.03.009 (2019).

    Google Scholar 

  3. Rosenberg, M. et al. Hepatitis B Virus and B-cell lymphoma: evidence, unmet need, clinical impact, and opportunities. Front. Oncol. 13, 1275800. https://doi.org/10.3389/fonc.2023.1275800 (2023).

    Google Scholar 

  4. Ren, W. et al. Distinct clinical and genetic features of hepatitis B virus-associated follicular lymphoma in Chinese patients. Blood Adv. 6, 2731–2744. https://doi.org/10.1182/bloodadvances.2021006410 (2022).

    Google Scholar 

  5. Ren, W. et al. Genetic landscape of hepatitis B virus-associated diffuse large B-cell lymphoma. Blood 131, 2670–2681. https://doi.org/10.1182/blood-2017-11-817601 (2018).

    Google Scholar 

  6. Svicher, V. et al. New insights into hepatitis B virus lymphotropism: Implications for HBV-related lymphomagenesis. Front. Oncol. 13, 1143258. https://doi.org/10.3389/fonc.2023.1143258 (2023).

    Google Scholar 

  7. Coffin, C. S., Mulrooney-Cousins, P. M. & Michalak, T. I. Hepadnaviral lymphotropism and its relevance to HBV persistence and pathogenesis. Front. Microbiol. 12, 695384. https://doi.org/10.3389/fmicb.2021.695384 (2021).

    Google Scholar 

  8. Li, M. et al. Characterization of hepatitis B virus infection and viral DNA integration in non-Hodgkin lymphoma. Int. J. Cancer 147, 2199–2209. https://doi.org/10.1002/ijc.33027 (2020).

    Google Scholar 

  9. Wang, Y. et al. Capable infection of hepatitis B virus in diffuse large B-cell lymphoma. J. Cancer 9, 1575–1581. https://doi.org/10.7150/jca.24384 (2018).

    Google Scholar 

  10. Dashtseren, B. et al. Endemic prevalence of hepatitis B and C in Mongolia: A nationwide survey amongst Mongolian adults. J. Viral. Hepat. 24, 759–767. https://doi.org/10.1111/jvh.12697 (2017).

    Google Scholar 

  11. Chen, X. et al. A novel quantitative microarray antibody capture assay identifies an extremely high hepatitis delta virus prevalence among hepatitis B virus-infected mongolians. Hepatology 66, 1739–1749. https://doi.org/10.1002/hep.28957 (2017).

    Google Scholar 

  12. Sterling, R. K. et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43, 1317–1325. https://doi.org/10.1002/hep.21178 (2006).

    Google Scholar 

  13. Wen, Y. et al. The regulators of BCR signaling during B cell activation. Blood Sci. 1, 119–129. https://doi.org/10.1097/BS9.0000000000000026 (2019).

    Google Scholar 

  14. Khiem, D., Cyster, J. G., Schwarz, J. J. & Black, B. L. A p38 MAPK-MEF2C pathway regulates B-cell proliferation. Proc. Natl. Acad. Sci. U. S. A. 105, 17067–17072. https://doi.org/10.1073/pnas.0804868105 (2008).

    Google Scholar 

  15. Li, T. Y., Yang, Y., Zhou, G. & Tu, Z. K. Immune suppression in chronic hepatitis B infection associated liver disease: A review. World J. Gastroenterol. 25, 3527–3537. https://doi.org/10.3748/wjg.v25.i27.3527 (2019).

    Google Scholar 

  16. Henning, A. N. et al. Peripheral B cells from patients with hepatitis C virus-associated lymphoma exhibit clonal expansion and an anergic-like transcriptional profile. iScience 26, 105801. https://doi.org/10.1016/j.isci.2022.105801 (2023).

    Google Scholar 

  17. Charles, E. D. et al. Clonal B cells in patients with hepatitis C virus-associated mixed cryoglobulinemia contain an expanded anergic CD21low B-cell subset. Blood 117, 5425–5437. https://doi.org/10.1182/blood-2010-10-312942 (2011).

    Google Scholar 

  18. Isnardi, I. et al. Complement receptor 2/CD21- human naive B cells contain mostly autoreactive unresponsive clones. Blood 115, 5026–5036. https://doi.org/10.1182/blood-2009-09-243071 (2010).

    Google Scholar 

  19. Bolotin, D. A. et al. MiXCR: software for comprehensive adaptive immunity profiling. Nat. Methods 12, 380–381. https://doi.org/10.1038/nmeth.3364 (2015).

    Google Scholar 

  20. Bolotin, D. A. et al. Antigen receptor repertoire profiling from RNA-seq data. Nat. Biotechnol. 35, 908–911. https://doi.org/10.1038/nbt.3979 (2017).

    Google Scholar 

  21. Deng, L. et al. Hepatitis B virus-associated diffuse large B-cell lymphoma: unique clinical features, poor outcome, and hepatitis B surface antigen-driven origin. Oncotarget 6, 25061–25073. https://doi.org/10.18632/oncotarget.4677 (2015).

    Google Scholar 

  22. Niaz, S. & Hussain, M. U. Role of GW182 protein in the cell. Int. J. Biochem. Cell Biol. 101, 29–38. https://doi.org/10.1016/j.biocel.2018.05.009 (2018).

    Google Scholar 

  23. Ryu, I., Park, J. H., An, S., Kwon, O. S. & Jang, S. K. eIF4GI facilitates the MicroRNA-mediated gene silencing. PLoS ONE 8, e55725. https://doi.org/10.1371/journal.pone.0055725 (2013).

    Google Scholar 

  24. Huang, Z. H., Du, Y. P., Wen, J. T., Lu, B. F. & Zhao, Y. snoRNAs: functions and mechanisms in biological processes, and roles in tumor pathophysiology. Cell Death Discov. 8, 259. https://doi.org/10.1038/s41420-022-01056-8 (2022).

    Google Scholar 

  25. Dong, H. J., Zhang, R., Kuang, Y. & Wang, X. J. Selective regulation in ribosome biogenesis and protein production for efficient viral translation. Arch. Microbiol. 203, 1021–1032. https://doi.org/10.1007/s00203-020-02094-5 (2021).

    Google Scholar 

  26. Iarovaia, O. V., Ioudinkova, E. S., Velichko, A. K. & Razin, S. V. Manipulation of cellular processes via nucleolus Hijaking in the course of viral infection in mammals. Cells https://doi.org/10.3390/cells10071597 (2021).

    Google Scholar 

  27. Fafard-Couture, E., Jacques, P. E. & Scott, M. S. Motif conservation, stability, and host gene expression are the main drivers of snoRNA expression across vertebrates. Genome Res. 33, 525–540. https://doi.org/10.1101/gr.277483.122 (2023).

    Google Scholar 

  28. Fafard-Couture, E., Bergeron, D., Couture, S., Abou-Elela, S. & Scott, M. S. Annotation of snoRNA abundance across human tissues reveals complex snoRNA-host gene relationships. Genome Biol. 22, 172. https://doi.org/10.1186/s13059-021-02391-2 (2021).

    Google Scholar 

  29. Dupuis-Sandoval, F., Poirier, M. & Scott, M. S. The emerging landscape of small nucleolar RNAs in cell biology. Wiley Interdiscip. Rev. RNA 6, 381–397. https://doi.org/10.1002/wrna.1284 (2015).

    Google Scholar 

  30. Wu, L. et al. Clinical significance of C/D box small nucleolar RNA U76 as an oncogene and a prognostic biomarker in hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol. 42, 82–91. https://doi.org/10.1016/j.clinre.2017.04.018 (2018).

    Google Scholar 

  31. Chen, L. et al. SNORD76, a box C/D snoRNA, acts as a tumor suppressor in glioblastoma. Sci. Rep. 5, 8588. https://doi.org/10.1038/srep08588 (2015).

    Google Scholar 

  32. Bao, Y. & Cao, X. Epigenetic control of B cell development and B-Cell-related immune disorders. Clin. Rev. Allergy Immunol. 50, 301–311. https://doi.org/10.1007/s12016-015-8494-7 (2016).

    Google Scholar 

  33. Jiang, Y., Dominguez, P. M. & Melnick, A. M. The many layers of epigenetic dysfunction in B-cell lymphomas. Curr. Opin. Hematol. 23, 377–384. https://doi.org/10.1097/MOH.0000000000000249 (2016).

    Google Scholar 

  34. Pasqualucci, L. et al. Analysis of the coding genome of diffuse large B-cell lymphoma. Nat. Genet. 43, 830–837. https://doi.org/10.1038/ng.892 (2011).

    Google Scholar 

  35. Cao, B. et al. Mutation landscape in Chinese nodal diffuse large B-cell lymphoma by targeted next generation sequencing and their relationship with clinicopathological characteristics. BMC Med. Genomics 17, 84. https://doi.org/10.1186/s12920-024-01866-y (2024).

    Google Scholar 

  36. Candelaria, M. et al. Characterizing the mutational landscape of diffuse large B-cell lymphoma in a prospective cohort of Mexican patients. Int. J. Mol. Sci. https://doi.org/10.3390/ijms25179328 (2024).

    Google Scholar 

  37. Zeisel, M. B., Guerrieri, F. & Levrero, M. Host epigenetic alterations and hepatitis B virus-associated hepatocellular carcinoma. J. Clin. Med. https://doi.org/10.3390/jcm10081715 (2021).

    Google Scholar 

  38. Koumbi, L. & Karayiannis, P. The epigenetic control of hepatitis B virus modulates the outcome of infection. Front. Microbiol. 6, 1491. https://doi.org/10.3389/fmicb.2015.01491 (2015).

    Google Scholar 

  39. Nsengimana, B. et al. Processing body (P-body) and its mediators in cancer. Mol. Cell. Biochem. 477, 1217–1238. https://doi.org/10.1007/s11010-022-04359-7 (2022).

    Google Scholar 

  40. Riggs, C. L., Kedersha, N., Ivanov, P. & Anderson, P. Mammalian stress granules and P bodies at a glance. J. Cell. Sci. https://doi.org/10.1242/jcs.242487 (2020).

    Google Scholar 

  41. Perez-Vilaro, G. et al. Hepatitis C virus infection inhibits P-body granule formation in human livers. J. Hepatol. 62, 785–790. https://doi.org/10.1016/j.jhep.2014.11.018 (2015).

    Google Scholar 

  42. Park, C., Qian, W. & Zhang, J. Genomic evidence for elevated mutation rates in highly expressed genes. EMBO Rep. 13, 1123–1129. https://doi.org/10.1038/embor.2012.165 (2012).

    Google Scholar 

  43. Ahuja, R., Kapoor, N. R. & Kumar, V. The HBx oncoprotein of hepatitis B virus engages nucleophosmin to promote rDNA transcription and cellular proliferation. Biochim. Biophys. Acta 1783–1795, 2015. https://doi.org/10.1016/j.bbamcr.2015.04.012 (1853).

    Google Scholar 

  44. Huang, W. H., Yung, B. Y., Syu, W. J. & Lee, Y. H. The nucleolar phosphoprotein B23 interacts with hepatitis delta antigens and modulates the hepatitis delta virus RNA replication. J. Biol. Chem. 276, 25166–25175. https://doi.org/10.1074/jbc.M010087200 (2001).

    Google Scholar 

  45. Huang, W. H., Chen, Y. S. & Chen, P. J. Nucleolar targeting of hepatitis delta antigen abolishes its ability to initiate viral antigenomic RNA replication. J. Virol. 82, 692–699. https://doi.org/10.1128/JVI.01155-07 (2008).

    Google Scholar 

  46. Shen, L. et al. Involvement of the oncogenic small nucleolar RNA SNORA24 in regulation of p53 stability in colorectal cancer. Cell Biol. Toxicol. 39, 1377–1394. https://doi.org/10.1007/s10565-022-09765-7 (2023).

    Google Scholar 

  47. Su, X. et al. The noncoding RNAs SNORD50A and SNORD50B-mediated TRIM21-GMPS interaction promotes the growth of p53 wild-type breast cancers by degrading p53. Cell. Death Differ. 28, 2450–2464. https://doi.org/10.1038/s41418-021-00762-7 (2021).

    Google Scholar 

  48. Yu, F. et al. p53 Represses the Oncogenic Sno-MiR-28 Derived from a SnoRNA. PLoS ONE 10, e0129190. https://doi.org/10.1371/journal.pone.0129190 (2015).

    Google Scholar 

  49. Bao, H. J. et al. Box C/D snoRNA SNORD89 influences the occurrence and development of endometrial cancer through 2′-O-methylation modification of Bim. Cell Death Discov. 8, 309. https://doi.org/10.1038/s41420-022-01102-5 (2022).

    Google Scholar 

  50. Lu, B. et al. C/D box small nucleolar RNA SNORD104 promotes endometrial cancer by regulating the 2′-O-methylation of PARP1. J. Transl. Med. 20, 618. https://doi.org/10.1186/s12967-022-03802-z (2022).

    Google Scholar 

  51. Wu, W. et al. SNORD60 promotes the tumorigenesis and progression of endometrial cancer through binding PIK3CA and regulating PI3K/AKT/mTOR signaling pathway. Mol. Carcinog. 62, 413–426. https://doi.org/10.1002/mc.23495 (2023).

    Google Scholar 

  52. Yuan, X., Huang, C. & Ran, Y. Exosome in HBV infection: current concepts and future perspectives. Front. Cell. Infect. Microbiol. 15, 1547525. https://doi.org/10.3389/fcimb.2025.1547525 (2025).

    Google Scholar 

  53. Harris, N. L. et al. A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84, 1361–1392 (1994).

    Google Scholar 

  54. Swerdlow SH, C. E., Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. (IARC, Lyon, 2017).

  55. Karatayli, E. et al. A one step real time PCR method for the quantification of hepatitis delta virus RNA using an external armored RNA standard and intrinsic internal control. J. Clin. Virol. 60, 11–15. https://doi.org/10.1016/j.jcv.2014.01.021 (2014).

    Google Scholar 

  56. Huang, R., Liao, X. & Li, Q. Integrative genomic analysis of a novel small nucleolar RNAs prognostic signature in patients with acute myelocytic leukemia. Math. Biosci. Eng. 19, 2424–2452. https://doi.org/10.3934/mbe.2022112 (2022).

    Google Scholar 

  57. Schulten, H. J. et al. Comprehensive molecular biomarker identification in breast cancer brain metastases. J. Transl. Med. 15, 269. https://doi.org/10.1186/s12967-017-1370-x (2017).

    Google Scholar 

  58. Taghizadeh, E., Heydarheydari, S., Saberi, A., JafarpoorNesheli, S. & Rezaeijo, S. M. Breast cancer prediction with transcriptome profiling using feature selection and machine learning methods. BMC Bioinform. 23, 410. https://doi.org/10.1186/s12859-022-04965-8 (2022).

    Google Scholar 

  59. Wang, B. et al. A plasma SNORD33 signature predicts platinum benefit in metastatic triple-negative breast cancer patients. Mol. Cancer 21, 22. https://doi.org/10.1186/s12943-022-01504-0 (2022).

    Google Scholar 

  60. Krishnan, P. et al. Profiling of small nucleolar RNAs by next generation sequencing: potential new players for breast cancer prognosis. PLoS ONE 11, e0162622. https://doi.org/10.1371/journal.pone.0162622 (2016).

    Google Scholar 

  61. He, J. Y. et al. Small nucleolar RNA, C/D Box 16 (SNORD16) acts as a potential prognostic biomarker in colon cancer. Dose Response 18, 1559325820917829. https://doi.org/10.1177/1559325820917829 (2020).

    Google Scholar 

  62. Tosar, J. P., Garcia-Silva, M. R. & Cayota, A. Circulating SNORD57 rather than piR-54265 is a promising biomarker for colorectal cancer: common pitfalls in the study of somatic piRNAs in cancer. RNA 27, 403–410. https://doi.org/10.1261/rna.078444.120 (2021).

    Google Scholar 

  63. Huang, L. et al. Prognostic value of small nucleolar RNAs (snoRNAs) for colon adenocarcinoma based on RNA sequencing data. Pathol. Res. Pract. 216, 152937. https://doi.org/10.1016/j.prp.2020.152937 (2020).

    Google Scholar 

  64. Li, M. W. et al. Identification of three small nucleolar RNAs (snoRNAs) as potential prognostic markers in diffuse large B-cell lymphoma. Cancer Med. 12, 3812–3829. https://doi.org/10.1002/cam4.5115 (2023).

    Google Scholar 

  65. Ding, Y. et al. Downregulation of snoRNA SNORA52 and its clinical significance in hepatocellular carcinoma. Biomed. Res. Int. 2021, 7020637. https://doi.org/10.1155/2021/7020637 (2021).

    Google Scholar 

  66. Xie, Q. et al. Identification of key snoRNAs serves as biomarkers for hepatocellular carcinoma by bioinformatics methods. Medicine (Baltimore) https://doi.org/10.1097/MD.0000000000030813 (2022).

    Google Scholar 

  67. Lopez-Corral, L. et al. Genomic analysis of high-risk smoldering multiple myeloma. Haematologica 97, 1439–1443. https://doi.org/10.3324/haematol.2011.060780 (2012).

    Google Scholar 

  68. Zhang, L., Xin, M. & Wang, P. Identification of a novel snoRNA expression signature associated with overall survival in patients with lung adenocarcinoma: A comprehensive analysis based on RNA sequencing dataset. Math. Biosci. Eng. 18, 7837–7860. https://doi.org/10.3934/mbe.2021389 (2021).

    Google Scholar 

  69. Gao, L. et al. Genome-wide small nucleolar RNA expression analysis of lung cancer by next-generation deep sequencing. Int. J. Cancer 136, E623-629. https://doi.org/10.1002/ijc.29169 (2015).

    Google Scholar 

  70. Liao, J. et al. Small nucleolar RNA signatures as biomarkers for non-small-cell lung cancer. Mol. Cancer 9, 198. https://doi.org/10.1186/1476-4598-9-198 (2010).

    Google Scholar 

  71. Dong, X. et al. Tumor-educated platelet SNORD55 as a potential biomarker for the early diagnosis of non-small cell lung cancer. Thorac. Cancer 12, 659–666. https://doi.org/10.1111/1759-7714.13823 (2021).

    Google Scholar 

  72. Zhou, H. et al. Identification of small nucleolar RNA SNORD60 as a potential biomarker and its clinical significance in lung adenocarcinoma. Biomed. Res. Int. 2022, 5501171. https://doi.org/10.1155/2022/5501171 (2022).

    Google Scholar 

  73. Wang, K. et al. Plasma SNORD83A as a potential biomarker for early diagnosis of non-small-cell lung cancer. Future Oncol. 18, 821–832. https://doi.org/10.2217/fon-2021-1278 (2022).

    Google Scholar 

  74. Zhu, W. et al. SNORD89 promotes stemness phenotype of ovarian cancer cells by regulating Notch1-c-Myc pathway. J. Transl. Med. 17, 259. https://doi.org/10.1186/s12967-019-2005-1 (2019).

    Google Scholar 

  75. Kitagawa, T. et al. Circulating pancreatic cancer exosomal RNAs for detection of pancreatic cancer. Mol. Oncol. 13, 212–227. https://doi.org/10.1002/1878-0261.12398 (2019).

    Google Scholar 

  76. Nikas, J. B. & Nikas, E. G. Genome-wide DNA methylation model for the diagnosis of prostate cancer. ACS Omega 4, 14895–14901. https://doi.org/10.1021/acsomega.9b01613 (2019).

    Google Scholar 

  77. Zhang, Y. et al. A three-snoRNA signature: SNORD15A, SNORD35B and SNORD60 as novel biomarker for renal cell carcinoma. Cancer Cell Int. 23, 136. https://doi.org/10.1186/s12935-023-02978-8 (2023).

    Google Scholar 

  78. Wang, L. Y. et al. Characterization the prognosis role and effects of snoRNAs in melanoma patients. Exp. Dermatol. 33, e14944. https://doi.org/10.1111/exd.14944 (2024).

    Google Scholar 

  79. Yi, Q. & Zou, W. J. A novel four-snoRNA signature for predicting the survival of patients with uveal melanoma. Mol. Med. Rep. 19, 1294–1301. https://doi.org/10.3892/mmr.2018.9766 (2019).

    Google Scholar 

  80. Gong, J. et al. A pan-cancer analysis of the expression and clinical relevance of small nucleolar RNAs in human cancer. Cell Rep. 21, 1968–1981. https://doi.org/10.1016/j.celrep.2017.10.070 (2017).

    Google Scholar 

  81. Cui, C. et al. NOP10 predicts lung cancer prognosis and its associated small nucleolar RNAs drive proliferation and migration. Oncogene 40, 909–921. https://doi.org/10.1038/s41388-020-01570-y (2021).

    Google Scholar 

  82. Faucher-Giguere, L. et al. High-grade ovarian cancer associated H/ACA snoRNAs promote cancer cell proliferation and survival. NAR Cancer https://doi.org/10.1093/narcan/zcab050 (2022).

    Google Scholar 

  83. Xu, A. et al. LncRNA H19 suppresses osteosarcomagenesis by regulating snoRNAs and DNA repair protein complexes. Front. Genet. 11, 611823. https://doi.org/10.3389/fgene.2020.611823 (2020).

    Google Scholar 

  84. Chen, F., Zheng, Y., Zhou, H. & Li, C. The regulatory role of SNORD35A in pancreatic cancer involves the HGF/C-met pathway. Cancer Biother. Radiopharm 39, 211–222. https://doi.org/10.1089/cbr.2022.0018 (2024).

    Google Scholar 

  85. Xu, B. et al. SNORD47, a box C/D snoRNA, suppresses tumorigenesis in glioblastoma. Oncotarget 8, 43953–43966. https://doi.org/10.18632/oncotarget.16693 (2017).

    Google Scholar 

  86. McMahon, M. et al. A single H/ACA small nucleolar RNA mediates tumor suppression downstream of oncogenic RAS. Elife https://doi.org/10.7554/eLife.48847 (2019).

    Google Scholar 

  87. Che, Y. et al. KRAS regulation by small non-coding RNAs and SNARE proteins. Nat. Commun. 10, 5118. https://doi.org/10.1038/s41467-019-13106-4 (2019).

    Google Scholar 

  88. Patil, P. et al. scaRNAs regulate splicing and vertebrate heart development. Biochim. Biophys. Acta 1619–1629, 2015. https://doi.org/10.1016/j.bbadis.2015.04.016 (1852).

    Google Scholar 

  89. Falaleeva, M. et al. Dual function of C/D box small nucleolar RNAs in rRNA modification and alternative pre-mRNA splicing. Proc. Natl. Acad. Sci. U. S. A. 113, E1625-1634. https://doi.org/10.1073/pnas.1519292113 (2016).

    Google Scholar 

  90. Huang, C. et al. A snoRNA modulates mRNA 3′ end processing and regulates the expression of a subset of mRNAs. Nucleic Acids Res. 45, 8647–8660. https://doi.org/10.1093/nar/gkx651 (2017).

    Google Scholar 

  91. Sharma, E., Sterne-Weiler, T., O’Hanlon, D. & Blencowe, B. J. Global mapping of human RNA-RNA interactions. Mol. Cell 62, 618–626. https://doi.org/10.1016/j.molcel.2016.04.030 (2016).

    Google Scholar 

  92. Chabronova, A. et al. Depletion of SNORA33 abolishes psi of 28S–U4966 and affects the ribosome translational apparatus. Int. J. Mol. Sci. https://doi.org/10.3390/ijms241612578 (2023).

    Google Scholar 

Download references

Acknowledgements

The authors thank all patients for their participation in this study.

Funding

Open access funding provided by the National Institutes of Health. This work was supported by funding provided by an NIAID-NCI research grant (Viral Hepatitis and Liver Cancer Research: U.S.-Mongolia Pilot Collaborative Award Program, 2016) and by the Intramural Research Program of the NIH Clinical Center (1ZIACL002121-11). The contributions of the NIH authors are considered Works of the United States Government. The findings and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the NIH or the U.S. Department of Health and Human Services.

Author information

Authors and Affiliations

  1. Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA

    Amanda N. Henning, Samantha Muccilli, Jordan Pardoe, Lara Perinet, Olivia Conway, Darryl Owusu-Ansah, Kobe Robichaux, Ryan Baumann, Harvey J. Alter & Valeria De Giorgi

  2. Department of Gastroenterology, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia

    Myagmarjav Budeebazar & Davaadorj Duger

  3. Liver Center, Ulaanbaatar, Mongolia

    Myagmarjav Budeebazar, Delgerbat Boldbaatar, Dahgwahdorj Yagaanbuyant & Naranjargal Dashdorj

  4. Center of Hematology and Bone Marrow Transplantation, First Central Hospital of Mongolia, Ulaanbaatar, Mongolia

    Khishigjargal Batsukh

  5. Onom Foundation, Ulaanbaatar, Mongolia

    Naranjargal Dashdorj

Authors
  1. Amanda N. Henning
    View author publications

    Search author on:PubMed Google Scholar

  2. Myagmarjav Budeebazar
    View author publications

    Search author on:PubMed Google Scholar

  3. Delgerbat Boldbaatar
    View author publications

    Search author on:PubMed Google Scholar

  4. Dahgwahdorj Yagaanbuyant
    View author publications

    Search author on:PubMed Google Scholar

  5. Davaadorj Duger
    View author publications

    Search author on:PubMed Google Scholar

  6. Khishigjargal Batsukh
    View author publications

    Search author on:PubMed Google Scholar

  7. Samantha Muccilli
    View author publications

    Search author on:PubMed Google Scholar

  8. Jordan Pardoe
    View author publications

    Search author on:PubMed Google Scholar

  9. Lara Perinet
    View author publications

    Search author on:PubMed Google Scholar

  10. Olivia Conway
    View author publications

    Search author on:PubMed Google Scholar

  11. Darryl Owusu-Ansah
    View author publications

    Search author on:PubMed Google Scholar

  12. Kobe Robichaux
    View author publications

    Search author on:PubMed Google Scholar

  13. Ryan Baumann
    View author publications

    Search author on:PubMed Google Scholar

  14. Harvey J. Alter
    View author publications

    Search author on:PubMed Google Scholar

  15. Naranjargal Dashdorj
    View author publications

    Search author on:PubMed Google Scholar

  16. Valeria De Giorgi
    View author publications

    Search author on:PubMed Google Scholar

Contributions

ANH performed data analysis, generated all article figures, and wrote the article. VDG and HJA conceived and designed the study; VDG supervised the research study; JP, LP, SM, OC, DOA, KR and RB supported the experimental work; SM supported the final review and editing; DB, MB, ND, DY, DD, and KB recruited participants, executed clinical protocols, and collected samples and clinical data. All co-authors critically reviewed the article.

Corresponding authors

Correspondence to Amanda N. Henning or Valeria De Giorgi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information 1.

Supplementary Information 2.

Supplementary Information 3.

Supplementary Information 4.

Supplementary Information 5.

Supplementary Information 6.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Henning, A.N., Budeebazar, M., Boldbaatar, D. et al. Hepatitis virus-associated B cell non-Hodgkin’s lymphoma involves dysregulated epigenetic and RNA-mediated regulatory gene expression and altered snoRNA transcription. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35041-3

Download citation

  • Received: 24 June 2025

  • Accepted: 01 January 2026

  • Published: 10 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35041-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • B cell non-Hodgkin’s lymphoma (BNHL)
  • Epigenetic regulation
  • ncRNA (non-coding RNA)
  • HBV (Hepatitis B Virus)
  • HDV (Hepatitis D Virus)
  • snoRNA (small nucleolar RNA)
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing