Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Geophysical and multi-criteria decision methods for delineating groundwater potential in coastal terrains: a study from Port Sudan
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Geophysical and multi-criteria decision methods for delineating groundwater potential in coastal terrains: a study from Port Sudan

  • Musaab A. A. Mohammed1,2,
  • Abazar M. A. Daoud3,4,
  • Mahmoud M. Kazem3,4,
  • Sarkhel H. Mohammed1,
  • Norbert P. Szabó1 &
  • …
  • Péter Szűcs1 

Scientific Reports , Article number:  (2026) Cite this article

  • 526 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Geophysics
  • Hydrogeology

Abstract

Groundwater resources in arid, semi-arid, and coastal regions are of vital importance due to the scarcity or complete absence of reliable surface water sources. Port Sudan city is now serving as the administrative capital following the country’s political instability. As a result, the city has witnessed a massive influx of internally displaced people, placing pressure on its already fragile water resources. The region is underlain by Precambrian basement terrains, restricting groundwater occurrence to structurally controlled aquifers and alluvial deposits. This study integrates gravity data analysis with the analytical hierarchy process (AHP) to delineate potential groundwater zones in the area. Structural features were extracted from gravity data using edge detection techniques, including vertical and horizontal derivatives, tilt angle derivative, and analytical signal. A density map of the identified structures was generated and integrated with other groundwater recharge-controlling factors including geology, rainfall, land use, slope, and drainage density within an AHP framework. The multi-criteria evaluation resulted in a groundwater potential map delineating three distinct zones: low (41.5%), moderate (13%), and high potential (45.5%). These zones were validated using 2D gravity inverse modeling constrained by boreholes data along two profiles. This integrated approach provided a preliminary yet effective tool for groundwater exploration in complex basement terrains and supports decision-making for further detailed hydrogeological and geophysical investigations in Port Sudan and similar arid environments. Incorporating more detailed geophysical analyses could further enhance subsurface characterization and improve groundwater potential assessments.

Similar content being viewed by others

Integrating geospatial, hydrogeological, and geophysical data to identify groundwater recharge potential zones in the Sulaymaniyah basin, NE of Iraq

Article Open access 22 March 2025

Groundwater potential zones demarcation in the hard rock province of South India: insights from remote sensing, GIS and AHP techniques

Article Open access 25 January 2026

Mapping the groundwater potential zones in mountainous areas of Southern China using GIS, AHP, and fuzzy AHP

Article Open access 17 May 2025

Data availability

The data that supports the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Priyan, K. Issues and challenges of groundwater and surface water management in semi-arid regions. Groundw Resour. Dev. Plan. semi-arid Reg 1–17 (2021).

  2. Alharbi, T., Abdelrahman, K., El-Sorogy, A. S. & Ibrahim, E. Contamination and health risk assessment of groundwater along the red sea coast, Northwest Saudi Arabia. Mar. Pollut Bull. 192, 115080 (2023).

    Google Scholar 

  3. El-Rayes, A., Omran, A., Geriesh, M. & Hochschild, V. Estimation of hydraulic conductivity in fractured crystalline aquifers using remote sensing and field data analyses: an example from Wadi Nasab area, South Sinai, Egypt. J. Earth Syst. Sci. 129, 203 (2020).

    Google Scholar 

  4. Díaz-Alcaide, S. & Martínez-Santos, P. Review: advances in groundwater potential mapping. Hydrogeol. J. 27, 2307–2324 (2019).

    Google Scholar 

  5. Mohammed, M. A. A. The use of Landsat ETM + in hydrogeological investigation in basement terrain, Hamissana area, N-E Sudan. Humanit. Nat. Sci. J. 1, 370–378 (2020).

    Google Scholar 

  6. Al-Garni, M., Hassanein, H. & Gobashy, M. Geophysical investigation of groundwater in Wadi Lusab, Haddat Ash Sham Area, Makkah Al-Mukarramah. Arab. Gulf J. Sci. Res. 24, 83–93 (2006).

    Google Scholar 

  7. Ebele, J. E. et al. Integrated groundwater exploration in basement complex terrain for sustainable regional water supply in Abuja, Nigeria. Groundw. Sustain. Dev. 25, 101141 (2024).

    Google Scholar 

  8. Skakni, O. et al. Integrating remote sensing, GIS and in-situ data for structural mapping over a part of the NW Rif belt, Morocco. Geocarto Int. 37, 3265–3292 (2022).

    Google Scholar 

  9. Magaia, L. A., Goto, T., Masoud, A. A. & Koike, K. Identifying groundwater potential in crystalline basement rocks using remote sensing and electromagnetic sounding techniques in central Western Mozambique. Nat. Resour. Res. 27, 275–298 (2018).

    Google Scholar 

  10. El-Rayes, A. E., Arnous, M. O., Shendi, E. A. H., Geriesh, M. H. & Gharib, R. A. Morphotectonic controls on hydro-environmental hazards in rift basins: a case study from Southern Suez Canal Province, Egypt. Geoenvironmental Disasters. 10, 18 (2023).

    Google Scholar 

  11. Arnous, M. O., El-Rayes, A. E., Geriesh, M. H., Ghodeif, K. O. & Al-Oshari, F. A. Groundwater potentiality mapping of tertiary volcanic aquifer in IBB basin, Yemen by using remote sensing and GIS tools. J. Coast Conserv. 24, 27 (2020).

    Google Scholar 

  12. Farhat, M., Ben, Azaiez, H., Dhaoui, M. & Gabtni, H. Structural control of hydrogeological setting revealed by gravity and Time Domain Electromagnetic data analysis: the Moulares basin (Southwestern Tunisia). Arab J. Geosci. 14(18), 1838 (2021).

    Google Scholar 

  13. Rubin, Y. & Hubbard, S. S. Hydrogeophysics Vol. 50 (Springer Science \& Business Media, 2006).

  14. Khadri, R., Khedidja, A., Boubaya, D. & Brinis, N. Integrated gravity and resistivity investigations of the deep Hammam Bradaa aquifer, Northeast algeria: implications for groundwater exploration. J. Afr. Earth Sci. 205, 105013 (2023).

    Google Scholar 

  15. Silva-Ávalos, R. U., Júnez-Ferreira, H. E., González-Trinidad, J. & Bautista-Capetillo, C. Non-linear 3D satellite gravity inversion for depth to the basement estimation in a Mexican semi-arid agricultural region. Appl. Sci. 12(14), 7252 (2022).

    Google Scholar 

  16. Mohammed, M. A. A., Szabó, N. P. & Szűcs, P. Joint interpretation and modeling of potential field data for mapping groundwater potential zones around Debrecen. Acta Geod. Geophys. https://doi.org/10.1007/s40328-023-00433-8 (2024).

    Google Scholar 

  17. Kebede, H., Alemu, A., Nedaw, D. & Fisseha, S. Depth estimates of anomalous subsurface sources using 2D/3D modeling of potential field data: implications for groundwater dynamics in the Ziway-Shala Lakes Basin, Central Main Ethiopian Rift. Heliyon 7, (2021).

  18. Kamaraj, P., Jothimani, M., Panda, B. & Sabarathinam, C. Mapping of groundwater potential zones by integrating remote sensing, geophysics, GIS, and AHP in a hard rock terrain. Urban Clim. 51, 101610 (2023).

    Google Scholar 

  19. Mandal, U. et al. Delineation of groundwater potential zones of coastal groundwater basin using Multi-Criteria decision making technique. Water Resour. Manag. 30, 4293–4310 (2016).

    Google Scholar 

  20. Tamesgen, Y., Atlabachew, A. & Jothimani, M. Groundwater potential assessment in the blue nile river catchment, Ethiopia, using Geospatial and multi-criteria decision-making techniques. Heliyon 9, (2023).

  21. Mohammed, S. H. et al. Integrating geospatial, hydrogeological, and geophysical data to identify groundwater recharge potential zones in the Sulaymaniyah basin, NE of Iraq. Sci. Rep. 15, 9920 (2025).

    Google Scholar 

  22. Dimple, Singh, P. K., Kothari, M., Yadav, K. K. & Bhakar, S. R. Multi-criteria decision analysis for groundwater potential zones delineation using Geospatial tools and analytical hierarchy process (AHP) in Nand Samand Catchment, Rajasthan, India. Environ. Dev. Sustain. 26, 14003–14037 (2024).

    Google Scholar 

  23. Chen, M. et al. Mapping the groundwater potential zones in mountainous areas of Southern China using GIS, AHP, and fuzzy AHP. Sci. Rep. 15, 17159 (2025).

    Google Scholar 

  24. Zenande, N., Adesola, G. O., Madi, K. & Gwavava, O. Groundwater potential assessment in the Eastern Cape, South Africa, using analytical hierarchical process (AHP) technique. Sustain. Water Resour. Manag. 10, 188 (2024).

    Google Scholar 

  25. Mohammed, M. A. A., Mohammed, S. H., Szabó, N. P. & Szűcs, P. Geospatial modeling for groundwater potential zoning using a multi-parameter analytical hierarchy process supported by geophysical data. Discov. Appl. Sci. 6(3), 121 (2024).

    Google Scholar 

  26. Ali, T. M. A., Awadelgeed, A. M. & Hassan, A. Selecting suitable sites for rainwater harvesting using GIS & RS technology in Port Sudan City, Sudan through hydrological modeling. J. Karary Univ. Eng. Sci. https://doi.org/10.54388/jkues.v3i2.267 (2024).

    Google Scholar 

  27. Hussein, M. T., Awad, H. S. & and Integrated water management plans to face development challenges in Eastern Sudan. Water Int. 32, 766–775 (2007).

    Google Scholar 

  28. Ismael, M., Mokhtar, A., Adil, H., Li, X. & Lü, X. Appraisal of heavy metals exposure risks via water pathway by using a combination pollution indices approaches, and the associated potential health hazards on population, red sea State, Sudan. Phys. Chem. Earth Parts A/B/C. 127, 103153 (2022).

    Google Scholar 

  29. Zeinelabdein, K. A. E., Mohamed, E. A. & Elsheikh, A. E. M. Applications of Remote Sensing and GIS in Geological Mapping, Mineral Prospecting and Groundwater Investigations in the Arabian-Nubian Shield: Cases from the Red Sea Hills of NE Sudan. In The Geology of the Arabian-Nubian Shield (eds Hamimi, Z. et al.) 659–686 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-72995-0_25.

    Google Scholar 

  30. Elsheikh, A. E. M., Zeielabdein, K. A. E. & Babikir, I. A. A. Groundwater balance in the Khor Arbaat basin, red sea State, Eastern Sudan. Hydrogeol. J. 17, 2075–2082 (2009).

    Google Scholar 

  31. Elkrail, A. B. & Obied, B. A. Hydrochemical characterization and groundwater quality in delta Tokar alluvial plain, red sea coast—Sudan. Arab. J. Geosci. 6, 3133–3138 (2013).

    Google Scholar 

  32. Abdelsalam, M. G. & Stern, R. J. Sutures and shear zones in the Arabian-nubian shield. J. African Earth Sci. 23(3), 289–310 (1996).

    Google Scholar 

  33. Rahman, E. M. A. Geochemical and geotectonic controls of the metallogenic evolution of selected ophiolite complexes from the SudanReimer,. (1993).

  34. Sestini, J. Cenozoic stratigraphy and depositional history, red sea coast, Sudan. Am. Assoc. Pet. Geol. Bull. 49, 1453–1472 (1965).

    Google Scholar 

  35. Babikir, I. A. A., Nagm, E., Bamousa, A. O. & Barazi, N. Facies analysis of the quaternary fluvial system of khor eit, red sea coast, Sudan. J. African. Earth Sci. 184, 104370 (2021).

    Google Scholar 

  36. ESRI. ArcGIS. at (2020). https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources

  37. Idowu, T. E. & Lasisi, K. H. Seawater intrusion in the coastal aquifers of East and Horn of africa: A review from a regional perspective. Sci. Afr. 8, e00402 (2020).

    Google Scholar 

  38. Hussien, M. T. Evaluation of groundwater resources in Tokar Delta, Sudan. Hydrol. Sci. J. 27, 139–145 (1982).

    Google Scholar 

  39. Gadelmula, A., Upton, K., Dochartaigh, B. & Bellwood, H. Africa Groundwater Atlas: Hydrogeology of Sudan. British Geological Survey (2018).

  40. Hirt, C. et al. New ultrahigh-resolution picture of earth’s gravity field. Geophys. Res. Lett. 40, 4279–4283 (2013).

    Google Scholar 

  41. Hirt, C. et al. SRTM2gravity: an ultrahigh resolution global model of gravimetric terrain corrections. Geophys. Res. Lett. 46, 4618–4627 (2019).

    Google Scholar 

  42. Spector, A. & Grant, F. S. Statistical models for interpreting aeromagnetic data. Geophysics 35, 293–302 (1970).

    Google Scholar 

  43. Sharma, B. & Geldart, L. P. Analysis of gravity anomalies of two-dimensional faults using fourier transforms. Geophys. Prospect. 16, 77–93 (1968).

    Google Scholar 

  44. Blakely, R. J. Potential theory in gravity and magnetic applications (Cambridge University Press, 1996).

  45. Keating, P. A simple technique to identify magnetic anomalies due to kimberlite pipes. Explor. Min. Geol. 4, 121–125 (1995).

    Google Scholar 

  46. Asghede, K. M. et al. Development of a litho-structural map for the upper Mereb area, Eritrea, using multi-source remote sensing data and machine learning models. Remote Sens. Appl. Soc. Environ. 40, 101722 (2025).

    Google Scholar 

  47. Cordell, L. New Mexico geological society Espanola Basin, new Mexico. New Mex Geol. Soc. Guideb 59–64 (1979).

  48. Miller, H. G. & Singh, V. Potential field tilt—a new concept for location of potential field sources. J. Appl. Geophys. 32, 213–217 (1994).

    Google Scholar 

  49. Ferreira, F. J. F., de Souza, J. & de Bongiolo, B. S. Castro, L. G. Enhancement of the total horizontal gradient of magnetic anomalies using the Tilt angle. GEOPHYSICS 78, J33–J41 (2013). de.

    Google Scholar 

  50. Mohieldain, A. A., Dobróka, M., Mohammed, M. A. A. & Szabó, N. P. Gravity-based structural and tectonic characterization of the Shendi-Atbara Basin, central Sudan. J Afr. Earth Sci 105571 (2025).

  51. Thompson, D. T. & EULDPH A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47, 31–37 (1982).

    Google Scholar 

  52. Talwani, M., Worzel, J. L. & Landisman, M. Rapid gravity computations for Two-Dimensional bodies with application to the mendocino submarine fracture zone. J. Geophys. Res. 64, 49–59 (1959).

    Google Scholar 

  53. Won, I. J. & Bevis, M. Computing the gravitational and magnetic anomalies due to a polygon: algorithms and fortran subroutines. Geophysics 52, 232–238 (1987).

    Google Scholar 

  54. Webring, M. SAKI: A Fortran program for generalized linear inversion of gravity and magnetic profiles. (1985).

  55. Marquardt, D. W. An algorithm for least-squares Estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963).

    Google Scholar 

  56. Saaty, T. L. Highlights and critical points in the theory and application of the analytic hierarchy process. Eur. J. Oper. Res. 74, 426–447 (1994).

    Google Scholar 

  57. Goepel, K. D. Implementation of an online software tool for the analytic hierarchy process (AHP-OS). Int J. Anal. Hierarchy Process 10, (2018).

  58. Saaty, T. L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83–98 (2008).

    Google Scholar 

  59. Saaty, T. L. Decision making for leaders: the analytic hierarchy process for decisions in a complex world (RWS, 2001).

  60. Varga, M. & Stipčević, J. Gravity anomaly models with geophysical interpretation of the Republic of Croatia, including Adriatic and dinarides regions. Geophys. J. Int. 226, 2189–2199 (2021).

    Google Scholar 

  61. Abdelsalam, M. G. Quantifying 3D post-accretionary tectonic strain in the Arabian-Nubian shield: superimposition of the Oko shear zone on the Nakasib Suture, red sea Hills, Sudan. J. Afr. Earth Sci. 56, 167–178 (2010).

    Google Scholar 

  62. Abotalib, A. Z., Sultan, M. & Elkadiri, R. Groundwater processes in saharan africa: implications for landscape evolution in arid environments. Earth Sci. Rev. 156, 108–136 (2016).

    Google Scholar 

  63. Elsheikh, A. E. M., Hamed, B. O., Ibinoof, M. A., Ali, O. M. M. & Mukhtar, M. I. The investigation of rifting phases and their evidences from the exposed outcrops at Khor Eit Area, as guide for Understanding the rifting phases in the red sea Coast of Sudan. Adv Appl. Sci. Res 15, (2024).

  64. Bosworth, W. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis. in 45–78 (2015). https://doi.org/10.1007/978-3-662-45201-1_3

  65. Das, B. & Pal, S. C. Combination of GIS and fuzzy-AHP for delineating groundwater recharge potential zones in the critical Goghat-II block of West Bengal, India.. HydroResearch 2, 21–30 (2019).

    Google Scholar 

  66. Rajasekhar, M., Sudarsana Raju, G., Sreenivasulu, Y. & Siddi Raju, R. Delineation of groundwater potential zones in semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. HydroResearch 2, 97–108 (2019).

    Google Scholar 

  67. Mohammed, M. A. A., Elsheikh, A. E. M., Szabó, N. P. & Szűcs, P. Hydrogeological investigation in basement terrains using geological, geomorphological, and geophysical methods, Western Hamissana area, NE Sudan. Geosci. Eng. 10, 173–184 (2022).

    Google Scholar 

  68. Githinji, T. W., Dindi, E. W., Kuria, Z. N. & Olago, D. O. Application of analytical hierarchy process and integrated fuzzy-analytical hierarchy process for mapping potential groundwater recharge zone using GIS in the arid areas of Ewaso Ng’iro – Lagh dera Basin, Kenya. HydroResearch 5, 22–34 (2022).

    Google Scholar 

  69. Adewumi, R., Agbasi, O. & Mayowa, A. Investigating groundwater potential in Northeastern basement complexes: A Pulka case study using Geospatial and geo-electrical techniques. HydroResearch 6, 73–88 (2023).

    Google Scholar 

  70. Singhal, B. B. S. & Gupta, R. P. Applied hydrogeology of fractured rocks (Springer Science \& Business Media, 2010). https://doi.org/10.1007/978-90-481-8799-7

Download references

Acknowledgements

The research was funded by the Sustainable Development and Technologies National Program of the Hungarian Academy of Sciences (FFT NP FTA). The authors thank their support.

Funding

Open access funding provided by University of Miskolc. The research was funded by the Sustainable Development and Technologies National Program of the Hungarian Academy of Sciences (FFT NP FTA).

Author information

Authors and Affiliations

  1. Faculty of Earth and Environmental Sciences and Engineering, University of Miskolc, Miskolc, 3515, Hungary

    Musaab A. A. Mohammed, Sarkhel H. Mohammed, Norbert P. Szabó & Péter Szűcs

  2. College of Petroleum Geology and Minerals, University of Bahri, Khartoum, Sudan

    Musaab A. A. Mohammed

  3. Faculty of Earth Sciences, Red Sea University Res Sea State, Port Sudan, Sudan

    Abazar M. A. Daoud & Mahmoud M. Kazem

  4. Department of Mineralogy and Geology, University of Debrecen, Egyetem Tér 1, Debrecen, 4032, Hungary

    Abazar M. A. Daoud & Mahmoud M. Kazem

Authors
  1. Musaab A. A. Mohammed
    View author publications

    Search author on:PubMed Google Scholar

  2. Abazar M. A. Daoud
    View author publications

    Search author on:PubMed Google Scholar

  3. Mahmoud M. Kazem
    View author publications

    Search author on:PubMed Google Scholar

  4. Sarkhel H. Mohammed
    View author publications

    Search author on:PubMed Google Scholar

  5. Norbert P. Szabó
    View author publications

    Search author on:PubMed Google Scholar

  6. Péter Szűcs
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Authors Contributions: Musaab A. A. Mohammed: writing original draft, methodology, formal analysis, and conceptualization. Abazar M.A. Daoud : writing original draft, data curation, and conceptualization. Mahmoud M. Kazem : Data curation, visualization, and writing original draft. Sarkhel H. Mohammed: methodology and writing original draft. Norbert P. Szabó: writing review and editing, validation, and supervision, Péter Szűcs: writing review and editing, validation, supervision, project administration, and funding acquisition.

Corresponding author

Correspondence to Musaab A. A. Mohammed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

The authors confirm that all the research meets ethical guidelines.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, M.A.A., Daoud, A.M.A., Kazem, M.M. et al. Geophysical and multi-criteria decision methods for delineating groundwater potential in coastal terrains: a study from Port Sudan. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35127-y

Download citation

  • Received: 16 June 2025

  • Accepted: 02 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35127-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Port Sudan
  • Gravity data
  • Edge detection
  • Geophysical inversion
  • AHP
  • Groundwater recharge
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing