Abstract
Groundwater resources in arid, semi-arid, and coastal regions are of vital importance due to the scarcity or complete absence of reliable surface water sources. Port Sudan city is now serving as the administrative capital following the country’s political instability. As a result, the city has witnessed a massive influx of internally displaced people, placing pressure on its already fragile water resources. The region is underlain by Precambrian basement terrains, restricting groundwater occurrence to structurally controlled aquifers and alluvial deposits. This study integrates gravity data analysis with the analytical hierarchy process (AHP) to delineate potential groundwater zones in the area. Structural features were extracted from gravity data using edge detection techniques, including vertical and horizontal derivatives, tilt angle derivative, and analytical signal. A density map of the identified structures was generated and integrated with other groundwater recharge-controlling factors including geology, rainfall, land use, slope, and drainage density within an AHP framework. The multi-criteria evaluation resulted in a groundwater potential map delineating three distinct zones: low (41.5%), moderate (13%), and high potential (45.5%). These zones were validated using 2D gravity inverse modeling constrained by boreholes data along two profiles. This integrated approach provided a preliminary yet effective tool for groundwater exploration in complex basement terrains and supports decision-making for further detailed hydrogeological and geophysical investigations in Port Sudan and similar arid environments. Incorporating more detailed geophysical analyses could further enhance subsurface characterization and improve groundwater potential assessments.
Similar content being viewed by others
Data availability
The data that supports the findings of this study are available from the corresponding author upon reasonable request.
References
Priyan, K. Issues and challenges of groundwater and surface water management in semi-arid regions. Groundw Resour. Dev. Plan. semi-arid Reg 1–17 (2021).
Alharbi, T., Abdelrahman, K., El-Sorogy, A. S. & Ibrahim, E. Contamination and health risk assessment of groundwater along the red sea coast, Northwest Saudi Arabia. Mar. Pollut Bull. 192, 115080 (2023).
El-Rayes, A., Omran, A., Geriesh, M. & Hochschild, V. Estimation of hydraulic conductivity in fractured crystalline aquifers using remote sensing and field data analyses: an example from Wadi Nasab area, South Sinai, Egypt. J. Earth Syst. Sci. 129, 203 (2020).
Díaz-Alcaide, S. & Martínez-Santos, P. Review: advances in groundwater potential mapping. Hydrogeol. J. 27, 2307–2324 (2019).
Mohammed, M. A. A. The use of Landsat ETM + in hydrogeological investigation in basement terrain, Hamissana area, N-E Sudan. Humanit. Nat. Sci. J. 1, 370–378 (2020).
Al-Garni, M., Hassanein, H. & Gobashy, M. Geophysical investigation of groundwater in Wadi Lusab, Haddat Ash Sham Area, Makkah Al-Mukarramah. Arab. Gulf J. Sci. Res. 24, 83–93 (2006).
Ebele, J. E. et al. Integrated groundwater exploration in basement complex terrain for sustainable regional water supply in Abuja, Nigeria. Groundw. Sustain. Dev. 25, 101141 (2024).
Skakni, O. et al. Integrating remote sensing, GIS and in-situ data for structural mapping over a part of the NW Rif belt, Morocco. Geocarto Int. 37, 3265–3292 (2022).
Magaia, L. A., Goto, T., Masoud, A. A. & Koike, K. Identifying groundwater potential in crystalline basement rocks using remote sensing and electromagnetic sounding techniques in central Western Mozambique. Nat. Resour. Res. 27, 275–298 (2018).
El-Rayes, A. E., Arnous, M. O., Shendi, E. A. H., Geriesh, M. H. & Gharib, R. A. Morphotectonic controls on hydro-environmental hazards in rift basins: a case study from Southern Suez Canal Province, Egypt. Geoenvironmental Disasters. 10, 18 (2023).
Arnous, M. O., El-Rayes, A. E., Geriesh, M. H., Ghodeif, K. O. & Al-Oshari, F. A. Groundwater potentiality mapping of tertiary volcanic aquifer in IBB basin, Yemen by using remote sensing and GIS tools. J. Coast Conserv. 24, 27 (2020).
Farhat, M., Ben, Azaiez, H., Dhaoui, M. & Gabtni, H. Structural control of hydrogeological setting revealed by gravity and Time Domain Electromagnetic data analysis: the Moulares basin (Southwestern Tunisia). Arab J. Geosci. 14(18), 1838 (2021).
Rubin, Y. & Hubbard, S. S. Hydrogeophysics Vol. 50 (Springer Science \& Business Media, 2006).
Khadri, R., Khedidja, A., Boubaya, D. & Brinis, N. Integrated gravity and resistivity investigations of the deep Hammam Bradaa aquifer, Northeast algeria: implications for groundwater exploration. J. Afr. Earth Sci. 205, 105013 (2023).
Silva-Ávalos, R. U., Júnez-Ferreira, H. E., González-Trinidad, J. & Bautista-Capetillo, C. Non-linear 3D satellite gravity inversion for depth to the basement estimation in a Mexican semi-arid agricultural region. Appl. Sci. 12(14), 7252 (2022).
Mohammed, M. A. A., Szabó, N. P. & Szűcs, P. Joint interpretation and modeling of potential field data for mapping groundwater potential zones around Debrecen. Acta Geod. Geophys. https://doi.org/10.1007/s40328-023-00433-8 (2024).
Kebede, H., Alemu, A., Nedaw, D. & Fisseha, S. Depth estimates of anomalous subsurface sources using 2D/3D modeling of potential field data: implications for groundwater dynamics in the Ziway-Shala Lakes Basin, Central Main Ethiopian Rift. Heliyon 7, (2021).
Kamaraj, P., Jothimani, M., Panda, B. & Sabarathinam, C. Mapping of groundwater potential zones by integrating remote sensing, geophysics, GIS, and AHP in a hard rock terrain. Urban Clim. 51, 101610 (2023).
Mandal, U. et al. Delineation of groundwater potential zones of coastal groundwater basin using Multi-Criteria decision making technique. Water Resour. Manag. 30, 4293–4310 (2016).
Tamesgen, Y., Atlabachew, A. & Jothimani, M. Groundwater potential assessment in the blue nile river catchment, Ethiopia, using Geospatial and multi-criteria decision-making techniques. Heliyon 9, (2023).
Mohammed, S. H. et al. Integrating geospatial, hydrogeological, and geophysical data to identify groundwater recharge potential zones in the Sulaymaniyah basin, NE of Iraq. Sci. Rep. 15, 9920 (2025).
Dimple, Singh, P. K., Kothari, M., Yadav, K. K. & Bhakar, S. R. Multi-criteria decision analysis for groundwater potential zones delineation using Geospatial tools and analytical hierarchy process (AHP) in Nand Samand Catchment, Rajasthan, India. Environ. Dev. Sustain. 26, 14003–14037 (2024).
Chen, M. et al. Mapping the groundwater potential zones in mountainous areas of Southern China using GIS, AHP, and fuzzy AHP. Sci. Rep. 15, 17159 (2025).
Zenande, N., Adesola, G. O., Madi, K. & Gwavava, O. Groundwater potential assessment in the Eastern Cape, South Africa, using analytical hierarchical process (AHP) technique. Sustain. Water Resour. Manag. 10, 188 (2024).
Mohammed, M. A. A., Mohammed, S. H., Szabó, N. P. & Szűcs, P. Geospatial modeling for groundwater potential zoning using a multi-parameter analytical hierarchy process supported by geophysical data. Discov. Appl. Sci. 6(3), 121 (2024).
Ali, T. M. A., Awadelgeed, A. M. & Hassan, A. Selecting suitable sites for rainwater harvesting using GIS & RS technology in Port Sudan City, Sudan through hydrological modeling. J. Karary Univ. Eng. Sci. https://doi.org/10.54388/jkues.v3i2.267 (2024).
Hussein, M. T., Awad, H. S. & and Integrated water management plans to face development challenges in Eastern Sudan. Water Int. 32, 766–775 (2007).
Ismael, M., Mokhtar, A., Adil, H., Li, X. & Lü, X. Appraisal of heavy metals exposure risks via water pathway by using a combination pollution indices approaches, and the associated potential health hazards on population, red sea State, Sudan. Phys. Chem. Earth Parts A/B/C. 127, 103153 (2022).
Zeinelabdein, K. A. E., Mohamed, E. A. & Elsheikh, A. E. M. Applications of Remote Sensing and GIS in Geological Mapping, Mineral Prospecting and Groundwater Investigations in the Arabian-Nubian Shield: Cases from the Red Sea Hills of NE Sudan. In The Geology of the Arabian-Nubian Shield (eds Hamimi, Z. et al.) 659–686 (Springer International Publishing, 2021). https://doi.org/10.1007/978-3-030-72995-0_25.
Elsheikh, A. E. M., Zeielabdein, K. A. E. & Babikir, I. A. A. Groundwater balance in the Khor Arbaat basin, red sea State, Eastern Sudan. Hydrogeol. J. 17, 2075–2082 (2009).
Elkrail, A. B. & Obied, B. A. Hydrochemical characterization and groundwater quality in delta Tokar alluvial plain, red sea coast—Sudan. Arab. J. Geosci. 6, 3133–3138 (2013).
Abdelsalam, M. G. & Stern, R. J. Sutures and shear zones in the Arabian-nubian shield. J. African Earth Sci. 23(3), 289–310 (1996).
Rahman, E. M. A. Geochemical and geotectonic controls of the metallogenic evolution of selected ophiolite complexes from the SudanReimer,. (1993).
Sestini, J. Cenozoic stratigraphy and depositional history, red sea coast, Sudan. Am. Assoc. Pet. Geol. Bull. 49, 1453–1472 (1965).
Babikir, I. A. A., Nagm, E., Bamousa, A. O. & Barazi, N. Facies analysis of the quaternary fluvial system of khor eit, red sea coast, Sudan. J. African. Earth Sci. 184, 104370 (2021).
ESRI. ArcGIS. at (2020). https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources
Idowu, T. E. & Lasisi, K. H. Seawater intrusion in the coastal aquifers of East and Horn of africa: A review from a regional perspective. Sci. Afr. 8, e00402 (2020).
Hussien, M. T. Evaluation of groundwater resources in Tokar Delta, Sudan. Hydrol. Sci. J. 27, 139–145 (1982).
Gadelmula, A., Upton, K., Dochartaigh, B. & Bellwood, H. Africa Groundwater Atlas: Hydrogeology of Sudan. British Geological Survey (2018).
Hirt, C. et al. New ultrahigh-resolution picture of earth’s gravity field. Geophys. Res. Lett. 40, 4279–4283 (2013).
Hirt, C. et al. SRTM2gravity: an ultrahigh resolution global model of gravimetric terrain corrections. Geophys. Res. Lett. 46, 4618–4627 (2019).
Spector, A. & Grant, F. S. Statistical models for interpreting aeromagnetic data. Geophysics 35, 293–302 (1970).
Sharma, B. & Geldart, L. P. Analysis of gravity anomalies of two-dimensional faults using fourier transforms. Geophys. Prospect. 16, 77–93 (1968).
Blakely, R. J. Potential theory in gravity and magnetic applications (Cambridge University Press, 1996).
Keating, P. A simple technique to identify magnetic anomalies due to kimberlite pipes. Explor. Min. Geol. 4, 121–125 (1995).
Asghede, K. M. et al. Development of a litho-structural map for the upper Mereb area, Eritrea, using multi-source remote sensing data and machine learning models. Remote Sens. Appl. Soc. Environ. 40, 101722 (2025).
Cordell, L. New Mexico geological society Espanola Basin, new Mexico. New Mex Geol. Soc. Guideb 59–64 (1979).
Miller, H. G. & Singh, V. Potential field tilt—a new concept for location of potential field sources. J. Appl. Geophys. 32, 213–217 (1994).
Ferreira, F. J. F., de Souza, J. & de Bongiolo, B. S. Castro, L. G. Enhancement of the total horizontal gradient of magnetic anomalies using the Tilt angle. GEOPHYSICS 78, J33–J41 (2013). de.
Mohieldain, A. A., Dobróka, M., Mohammed, M. A. A. & Szabó, N. P. Gravity-based structural and tectonic characterization of the Shendi-Atbara Basin, central Sudan. J Afr. Earth Sci 105571 (2025).
Thompson, D. T. & EULDPH A new technique for making computer-assisted depth estimates from magnetic data. Geophysics 47, 31–37 (1982).
Talwani, M., Worzel, J. L. & Landisman, M. Rapid gravity computations for Two-Dimensional bodies with application to the mendocino submarine fracture zone. J. Geophys. Res. 64, 49–59 (1959).
Won, I. J. & Bevis, M. Computing the gravitational and magnetic anomalies due to a polygon: algorithms and fortran subroutines. Geophysics 52, 232–238 (1987).
Webring, M. SAKI: A Fortran program for generalized linear inversion of gravity and magnetic profiles. (1985).
Marquardt, D. W. An algorithm for least-squares Estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963).
Saaty, T. L. Highlights and critical points in the theory and application of the analytic hierarchy process. Eur. J. Oper. Res. 74, 426–447 (1994).
Goepel, K. D. Implementation of an online software tool for the analytic hierarchy process (AHP-OS). Int J. Anal. Hierarchy Process 10, (2018).
Saaty, T. L. Decision making with the analytic hierarchy process. Int. J. Serv. Sci. 1, 83–98 (2008).
Saaty, T. L. Decision making for leaders: the analytic hierarchy process for decisions in a complex world (RWS, 2001).
Varga, M. & Stipčević, J. Gravity anomaly models with geophysical interpretation of the Republic of Croatia, including Adriatic and dinarides regions. Geophys. J. Int. 226, 2189–2199 (2021).
Abdelsalam, M. G. Quantifying 3D post-accretionary tectonic strain in the Arabian-Nubian shield: superimposition of the Oko shear zone on the Nakasib Suture, red sea Hills, Sudan. J. Afr. Earth Sci. 56, 167–178 (2010).
Abotalib, A. Z., Sultan, M. & Elkadiri, R. Groundwater processes in saharan africa: implications for landscape evolution in arid environments. Earth Sci. Rev. 156, 108–136 (2016).
Elsheikh, A. E. M., Hamed, B. O., Ibinoof, M. A., Ali, O. M. M. & Mukhtar, M. I. The investigation of rifting phases and their evidences from the exposed outcrops at Khor Eit Area, as guide for Understanding the rifting phases in the red sea Coast of Sudan. Adv Appl. Sci. Res 15, (2024).
Bosworth, W. Geological Evolution of the Red Sea: Historical Background, Review, and Synthesis. in 45–78 (2015). https://doi.org/10.1007/978-3-662-45201-1_3
Das, B. & Pal, S. C. Combination of GIS and fuzzy-AHP for delineating groundwater recharge potential zones in the critical Goghat-II block of West Bengal, India.. HydroResearch 2, 21–30 (2019).
Rajasekhar, M., Sudarsana Raju, G., Sreenivasulu, Y. & Siddi Raju, R. Delineation of groundwater potential zones in semi-arid region of Jilledubanderu river basin, Anantapur District, Andhra Pradesh, India using fuzzy logic, AHP and integrated fuzzy-AHP approaches. HydroResearch 2, 97–108 (2019).
Mohammed, M. A. A., Elsheikh, A. E. M., Szabó, N. P. & Szűcs, P. Hydrogeological investigation in basement terrains using geological, geomorphological, and geophysical methods, Western Hamissana area, NE Sudan. Geosci. Eng. 10, 173–184 (2022).
Githinji, T. W., Dindi, E. W., Kuria, Z. N. & Olago, D. O. Application of analytical hierarchy process and integrated fuzzy-analytical hierarchy process for mapping potential groundwater recharge zone using GIS in the arid areas of Ewaso Ng’iro – Lagh dera Basin, Kenya. HydroResearch 5, 22–34 (2022).
Adewumi, R., Agbasi, O. & Mayowa, A. Investigating groundwater potential in Northeastern basement complexes: A Pulka case study using Geospatial and geo-electrical techniques. HydroResearch 6, 73–88 (2023).
Singhal, B. B. S. & Gupta, R. P. Applied hydrogeology of fractured rocks (Springer Science \& Business Media, 2010). https://doi.org/10.1007/978-90-481-8799-7
Acknowledgements
The research was funded by the Sustainable Development and Technologies National Program of the Hungarian Academy of Sciences (FFT NP FTA). The authors thank their support.
Funding
Open access funding provided by University of Miskolc. The research was funded by the Sustainable Development and Technologies National Program of the Hungarian Academy of Sciences (FFT NP FTA).
Author information
Authors and Affiliations
Contributions
Authors Contributions: Musaab A. A. Mohammed: writing original draft, methodology, formal analysis, and conceptualization. Abazar M.A. Daoud : writing original draft, data curation, and conceptualization. Mahmoud M. Kazem : Data curation, visualization, and writing original draft. Sarkhel H. Mohammed: methodology and writing original draft. Norbert P. Szabó: writing review and editing, validation, and supervision, Péter Szűcs: writing review and editing, validation, supervision, project administration, and funding acquisition.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
The authors confirm that all the research meets ethical guidelines.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Mohammed, M.A.A., Daoud, A.M.A., Kazem, M.M. et al. Geophysical and multi-criteria decision methods for delineating groundwater potential in coastal terrains: a study from Port Sudan. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35127-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-35127-y


