Abstract
Thermal analysis of heat exchangers is crucial in both conventional and sustainable energy systems. However, traditional (non–dimensional) methods may be inadequate in certain scenarios, such as temperature or heat maps, pinch point prediction, two–phase or trans–critical flows. These challenges can be addressed using discrete thermal analysis methods, which allow for the numerical calculation of temperature and heat maps, or effectiveness values for heat exchangers having any complex flow patterns. This research introduces the Discrete Sub–Heat Exchanger (DSHE) method and demonstrates its application to the E–type shell–and–tube heat exchangers under defined NTU and Cr conditions. According to the application results, temperature and heat maps have been calculated successfully, with numerical effectiveness values closely matching analytical ones. Finally, sensitivity and error analyses in wide NTU and Cr ranges confirm the excellent applicability of the DSHE method with acceptable analytical error rates.
Data availability
All data generated or analyzed during this study are included in this published article. No external datasets were used.
Abbreviations
- C :
-
Heat capability [W/K]
- Cr :
-
Heat capability ratio
- N p :
-
Number of tube passes
- n :
-
Number
- ntu :
-
Number of transfer units of sub–heat exchanger
- NTU :
-
Number of transfer units
- \(\dot{Q}\) :
-
Heat transfer rate [W]
- T :
-
Temperature [°C]
- e :
-
Error rate
- P :
-
Thermal effectiveness
- R :
-
Heat capability ratio
- F :
-
Correction factor
- DSHE :
-
Discrete sub – heat exchanger
- E 2 STHE :
-
E–type shell–and–tube heat exchanger having two–tube passes
- TEMA :
-
Tubular Exchanger Manufacturers Association
- SS :
-
Shell – side fluid
- TS :
-
Tube – side fluid
- LMTD :
-
Logarithmic temperature mean difference
- spmd :
-
Single program, multi data
- analy :
-
Analytical
- min :
-
Minimum
- max :
-
Maximum
- sp :
-
Sub–heat exchanger pair
- r :
-
Rate
- p :
-
Parallel
- c :
-
Counter
- j :
-
Counter
- t :
-
Tube – side
- s :
-
Shell – side
- num :
-
Numerical
- I :
-
First law
- k :
-
Iteration number
- ε :
-
Effectiveness
References
Hu, X., Chen, P., Guo, X. & Zhang, X. Comparative studies on the thermal performance of novel PCM-based heat sinks using 3D-printed thermal conductivity enhancers. Int. Commun. Heat. Mass. Transf. 162, 108613. https://doi.org/10.1016/j.icheatmasstransfer.2025.108613 (2025).
Hu, X., Chen, P., Guo, X. & Zhang, X. Numerical investigation on thermal behavior of PCM embedded in structured porous fins (SPFs) with various configurations and materials. Appl. Therm. Eng. 274, 126617. https://doi.org/10.1016/j.applthermaleng.2025.126617 (2025).
Delouei, A. A., Sajjadi, H., Mohebbi, R. & Izadi, M. Ultrasonics - Sonochemistry experimental study on Inlet turbulent flow under ultrasonic vibration: pressure drop and heat transfer enhancement. Ultrason. - Sonochemistry. 51, 151–159. https://doi.org/10.1016/j.ultsonch.2018.10.032 (2019).
Delouei, A. A., Sajjadi, H., Izadi, M. & Mohebbi, R. The simultaneous e Ff Ects of nanoparticles and ultrasonic vibration on inlet turbulent flow: an experimental study. 146 268–277. https://doi.org/10.1016/j.applthermaleng.2018.09.113 (2019).
Amiri, A., Naeimi, H., Sajjadi, H. & Atashafrooz, M. An active approach to heat transfer enhancement in indirect heaters of City gate stations: an experimental modeling. Appl. Therm. Eng. 237, 121795. https://doi.org/10.1016/j.applthermaleng.2023.121795 (2024).
Delouei, A. A., Sajjadi, H. & Ahmadi, G. The effect of piezoelectric transducer location on heat transfer enhancement of an Ultrasonic – Assisted Liquid – Cooled CPU Radiator, Iran. J. Sci. Technol. Trans. Mech. Eng. 48, 239–252. https://doi.org/10.1007/s40997-023-00667-5 (2024).
Jalali, A., Delouei, A. A., Zaertaraghi, M. R. & Tavasoli, S. A. Experimental investigation on active heat transfer improvement in double-pipe heat exchangers. (2024).
Kays, W. M. & London, A. L. Compact Heat Exchangers 3rd edn (McGraw-Hill, 1984).
Shah, R. K. & Sekuli, D. P. Fundamentals Heat. Exchanger Des., https://doi.org/10.1002/9780470172605.ch10. (2007).
Tubular Exchanger Manufacturers Association (TEMA). https://tema.org/ (2024).
Sekulić, D. P., Shah, R. K. & Pignotti, A. A review of solution methods for determining effectiveness-NTU relationships for heat exchangers with complex flow arrangements. Appl. Mech. Rev. 52, 97–117. https://doi.org/10.1115/1.3098928 (1999).
Underwood, A. J. V. The calculation of the mean temperature difference in multi-pass heat exchangers. J. Inst. Pet. Technol. 25 (1934).
Nagle, W. M. Mean temperature differences in multipass heat exchangers. Ind. Eng. Chem. 25, 604–609. https://doi.org/10.1021/ie50282a003 (1933).
Donald, Q. & Kern Process. Heat. Transf. 871. http://sv.20file.org/up1/423_0.pdf (1950).
Fischer, F. K. Mean temperature difference correction in multipass exchangers. Ind. Eng. Chem. 30, 377–383. https://doi.org/10.1021/ie50340a004 (1938).
Bowman, B. Y. R. A., Mueller, A. C. & Nagle, W. M. Mean temperature difference in design. (1940).
Çengel Yunus, A. Heat and mass transfer fundamentals and applications 5Th, (2007).
KERN, D. & KRAUS, A. The effectiveness of heat exchangers with one shell pass and even numbers of tube passes. ASME 65 (1965).
Baclic, B. S. 1–2 N shell-and-tube exchanger effectiveness: a simplified Kraus-Kern equation. J. Heat Transf. 111 ((Transcations ASME (American Soc. Mech. Eng. Ser. C), 1989).
Bačlić, B. S. 1-(2 N-1) shell-and-tube exchanger effectiveness: explicit equations. Heat. Mass. Transf. Und Stoffuebertragung. 33, 163–165. https://doi.org/10.1007/s002310050174 (1997).
Seban, R. A. Multipass heat exchangers with a single Well-Mixed shell pass. J. Heat. Transf. 110, 782–785. https://doi.org/10.1115/1.3250560 (1988).
Pignotti, A. & Tamborenea, P. I. Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers. J. Heat. Transf. 110, 54–59. https://doi.org/10.1115/1.3250472 (1988).
Domingos, J. D. Analysis of complex assemblies of heat exchangers. Int. J. Heat. Mass. Transf. 12, 537–548. https://doi.org/10.1016/0017-9310(69)90037-4 (1969).
Pignotti, A. Matrix formalism for complex heat exchangers. J. Heat. Transf. 106, 352–360. https://doi.org/10.1115/1.3246680 (1984).
Crozier, R. & Samuels, M. Mean temperature difference in odd-tube-pass heat exchangers. J. Heat. Transf. 99, 487–489. https://doi.org/10.1115/1.3450724 (1977).
O’Hare, M. S., Hess, L. & Kraus, A. D. The effectiveness of heat exchangers with one shell pass and an odd number of tube passes. In Int. Heat Transf. Conf. Digit. Libr. (Begel House Inc., 1986).
Gaddis, E. S. & Schlünder, E. U. Temperature distribution and heat exchange in multipass shell-and-tube exchangers with baffles. Heat. Transf. Eng. 1, 43–52. https://doi.org/10.1080/01457637908939548 (1979).
Ribando, R. J., O’Leary, G. W. & Carlson-Skalak, S. General numerical scheme for heat exchanger thermal analysis and design. Comput. Appl. Eng. Educ. 5, 231–242 (1997).
Karellas, S., Schuster, A. & Leontaritis, A. D. Influence of supercritical ORC parameters on plate heat exchanger design. Appl. Therm. Eng. 33–34. https://doi.org/10.1016/j.applthermaleng.2011.09.013 (2012).
Cayer, E., Galanis, N., Desilets, M., Nesreddine, H. & Roy, P. Analysis of a carbon dioxide transcritical power cycle using a low temperature source. Appl. Energy. 86, 1055–1063. https://doi.org/10.1016/j.apenergy.2008.09.018 (2009).
Li, M. et al. Thermo-economic analysis and comparison of a CO2 transcritical power cycle and an organic Rankine cycle. Geothermics 50, 101–111. https://doi.org/10.1016/j.geothermics.2013.09.005 (2014).
Bracco, S., Faccioli, I. & Troilo, M. Dynamic simulation model of a two-fluids heat exchanger based on a numerical discretization method. 285–293. (2007).
Nellis, G., Klein, S. & Transfer, H. (Cambridge University Press, 2009).
Murty, K. N. Heat transfer characteristics of one-and two-tube-pass split-flow heat exchangers. Heat. Transf. Eng. 4, 26–34. https://doi.org/10.1080/01457638108939606 (1983).
Teke, I., Ağra, Ö., Demir, H. & Atayilmaz, S. Ö. Sizing, selection, and comparison of heat exchangers considering the lowest saving-investment ratio corresponding to the area at the Tag end of the heat exchanger. Energy 78, 114–121. https://doi.org/10.1016/j.energy.2014.08.035 (2014).
MathWorks & Matlab. https://www.mathworks.com/ (2024).
Single Program Multiple Data. https://www.mathworks.com/help/parallel-computing/spmd.html (2024).
AMD cpu properties. https://www.amd.com/en/products/processors/desktops/ryzen/5000-series/amd-ryzen-9-5900x.html (2025).
Author information
Authors and Affiliations
Contributions
**Kubilay Bayramoğlu: ** Supervisor, Writing–Reviewing and Editing. **İbrahim KAYA: ** Conceptualization, Methodology, Modelling, Visualization, Investigation. **Yasin ÜST: ** Data Curation, Writing–Original draft preparation.
Corresponding author
Ethics declarations
Competing interests
There is no any competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Bayramoğlu, K., Kaya, I. & Ust, Y. Discrete thermal analysis of the E–type shell–and–tube heat exchanger. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35215-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-35215-z