Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Eco-friendly synthesis of Balanites aegyptiaca-derived selenium nanoparticles: extract and assessment of their anticancer, antimicrobial, cytogenetic and molecular docking insights
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Eco-friendly synthesis of Balanites aegyptiaca-derived selenium nanoparticles: extract and assessment of their anticancer, antimicrobial, cytogenetic and molecular docking insights

  • Mohamed I. M. El-Zaidy1,
  • Heba G. Ayoub2,
  • Gehan El-Akabawy3,4,5,
  • Amira A. Ibrahim6 &
  • …
  • Mohamed Abdel-Haleem7 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biochemistry
  • Biological techniques
  • Biotechnology
  • Cancer
  • Chemical biology
  • Chemistry
  • Drug discovery
  • Microbiology

Abstract

This study reports the eco-friendly synthesis of selenium nanoparticles (SeNPs) using the methanolic extract of Balanites aegyptiaca mesocarp and evaluates their biological activities. The synthesized spherical SeNPs (average size: 2.82 nm) were characterized by TEM, FESEM, and UV–Vis spectroscopy, confirming that phenolic compounds serve as both reducing and stabilizing agents. HPLC analysis revealed eight major phenolics, with gallic acid, chlorogenic acid, and daidzein being the predominant compounds. The SeNPs exhibited strong cytotoxicity against HCT-116 colorectal cancer cells (IC₅₀ = 30.03 µg/mL), potent antibacterial activity against Klebsiella pneumoniae, Escherichia coli, and Enterococcus faecalis, and induced concentration-dependent cytogenetic effects in Vicia faba root tips. Molecular docking studies suggested that phenolic compounds effectively interact with the CDK4 active site, supporting their potential anticancer properties. These findings highlight B. aegyptiaca-derived SeNPs as promising candidates for biomedical applications.

Similar content being viewed by others

Biomedical potential of Anabaena variabilis NCCU-441 based Selenium nanoparticles and their comparison with commercial nanoparticles

Article Open access 29 June 2021

Exploring the antimicrobial, antioxidant, anticancer, biocompatibility, and larvicidal activities of selenium nanoparticles fabricated by endophytic fungal strain Penicillium verhagenii

Article Open access 03 June 2023

Comparative evaluation of biomedical and phytochemical applications of zinc nanoparticles by using Fagonia cretica extracts

Article Open access 15 June 2022

Data availability

All data supporting the findings of this study are available within the paper and its Supplementary Information.

References

  1. Amani, M. D. et al. Eco-friendly synthesis of zinc oxide nanoparticles by garcinia cambogia and evaluation of their obesity and antimicrobial activities. Egypt. J. Chem. 67 (2), 17–27 (2024).

    Google Scholar 

  2. Sahar, A. M. et al. Bioactive compounds from leaves and Bolls extracts of Gossypium Barbadense L. And assessment of their antioxidants & cytotoxic activities. Egypt. J. Chem. 66 (13), 1117–1124 (2023).

    Google Scholar 

  3. Kieliszek, M. & Błażejak, S. Current knowledge on the importance of selenium in food for living organisms: a review. Molecules 21 (5), 609 (2016).

    Google Scholar 

  4. Misra, S., Boylan, M., Selvam, A., Spallholz, J. E. & Björnstedt, M. Redox-active selenium compounds—From toxicity and cell death to cancer treatment. Nutrients 7 (5), 3536–3556 (2015).

    Google Scholar 

  5. mani, M. D. et al. Green biosynthesized selenium nanoparticles and bioactive compounds by Gossypium Barbadense L. Extract and their cytotoxic potential. Egypt. J. Chem. 66 (8), 439–448 (2023).

    Google Scholar 

  6. Ren, F., He, X., Wang, K. & Yin, J. Biosynthesis of gold nanoparticles using Catclaw buttercup (Radix ranunculi Ternati) and evaluation of its colloidal stability. J. Biomed. Nanotechnol. 8 (4), 586–593 (2012).

    Google Scholar 

  7. Boroumand, S., Safari, M., Shaabani, E., Shirzad, M. & Faridi-Majidi, R. Selenium nanoparticles: synthesis, characterization and study of their cytotoxicity, antioxidant and antibacterial activity. Mater. Res. Express. 6 (8), 0850d8 (2019).

    Google Scholar 

  8. Sharma, G. et al. Biomolecule-mediated synthesis of selenium nanoparticles using dried vitis vinifera (raisin) extract. Molecules 19 (3), 2761–2770 (2014).

    Google Scholar 

  9. Vyas, J., Rana, S. H. & A. F. K. A., T. Antioxidant activity and biogenic synthesis of selenium nanoparticles using the leaf extract of Aloe Vera. Int. J. Curr. Pharm. Res. 9, 147–152 (2017).

    Google Scholar 

  10. Vyas, J. & Rana, S. Antioxidant activity and green synthesis of selenium nanoparticles using allium sativum extract. Int. J. Phytomedicine. 9 (4), 634–641 (2017).

    Google Scholar 

  11. Anu, K. et al. Biogenesis of selenium nanoparticles and their anti-leukemia activity. J. King Saud University-Science. 32 (4), 2520–2526 (2020).

    Google Scholar 

  12. Deepa, B. & Ganesan, V. Biogenic synthesis and characterization of selenium nanoparticles using the flower of Bougainvillea spectabilis willd. IJSR 4, 690–695 (2015).

    Google Scholar 

  13. Zeebaree, S. Y. S., Zeebaree, A. Y. S. & Zebari, O. I. H. Diagnosis of the multiple effect of selenium nanoparticles decorated by asteriscus graveolens components in inhibiting HepG2 cell proliferation. Sustainable Chem. Pharm. 15, 100210 (2020).

    Google Scholar 

  14. Santanu, S., Sowmiya, R. & Balakrishnaraja, R. Biosynthesis of selenium nanoparticles using citrus reticulata Peel extract. World J. Pharm. Res. 4 (1), 1322–1330 (2015).

    Google Scholar 

  15. Gunti, L., Dass, R. S. & Kalagatur, N. K. Phyto fabrication of selenium nanoparticles from emblica officinalis fruit extract and exploring its biopotential applications: antioxidant, antimicrobial, and biocompatibility. Front. Microbiol. 10, 931 (2019).

    Google Scholar 

  16. Tripathi, R. M. et al. Biosynthesis of highly stable fluorescent selenium nanoparticles and the evaluation of their photocatalytic degradation of dye. BioNanoScience 10 (2), 389–396 (2020).

    Google Scholar 

  17. Alam, H., Khatoon, N., Raza, M., Ghosh, P. C. & Sardar, M. Synthesis and characterization of nano selenium using plant biomolecules and their potential applications. BioNanoScience 9 (1), 96–104 (2019).

    Google Scholar 

  18. Cui, D. et al. Green synthesis of selenium nanoparticles with extract of Hawthorn fruit induced HepG2 cells apoptosis. Pharm. Biol. 56 (1), 528–534 (2018).

    Google Scholar 

  19. Almutairi, H. H. et al. Metabolomic characterization of fresh and dried Korean red ginseng (panax ginseng) based on gc-ms analysis, alongside an exploration of the antioxidant and anticancer properties of their methanolic extract. Bull. Chem. Soc. Ethiop. 39 (10), 2039–2053 (2025).

    Google Scholar 

  20. Alagesan, V. & Venugopal, S. Green synthesis of selenium nanoparticle using leaves extract of Withania somnifera and its biological applications and photocatalytic activities. Bionanoscience 9 (1), 105–116 (2019).

    Google Scholar 

  21. Shehta, W. et al. The novel synthesis of a condensed triazine via the heterocyclization of an Azo derivative and its characterization, radiolabeling and bio-evaluation. RSC Adv. 15 (47), 39988–40005 (2025).

    Google Scholar 

  22. Sivakumar, C. & Jeganathan, K. In-vitro cytotoxicity of Java tea mediated selenium nanoballs against L6 cell lines. J. Drug Delivery Ther. 8 (6), 195–200 (2018).

    Google Scholar 

  23. Kirupagaran, R., Saritha, A. & Bhuvaneswari, S. Green synthesis of selenium nanoparticles from leaf and stem extract of leucas Lavandulifolia Sm. and their application. J. Nanosci. Technol. 2(5), 224–226 (2016).

  24. Fardsadegh, B. & Jafarizadeh-Malmiri, H. Aloe Vera leaf extract mediated green synthesis of selenium nanoparticles and assessment of their in vitro antimicrobial activity against spoilage fungi and pathogenic bacteria strains. Green. Process. Synthesis. 8 (1), 399–407 (2019).

    Google Scholar 

  25. Anu, K., Singaravelu, G., Murugan, K. & Benelli, G. Green-synthesis of selenium nanoparticles using Garlic cloves (Allium sativum): biophysical characterization and cytotoxicity on Vero cells. J. Cluster Sci. 28 (1), 551–563 (2017).

    Google Scholar 

  26. Sowndarya, P., Ramkumar, G. & Shivakumar, M. S. Green synthesis of selenium nanoparticles conjugated Clausena dentata plant leaf extract and their insecticidal potential against mosquito vectors. Artif. Cells Nanomed. Biotechnol. 45 (8), 1490–1495 (2017).

    Google Scholar 

  27. Fadlallah, H. et al. Colorectal cancer: recent advances in management and treatment. World J. Clin. Oncol. 15 (9), 1136 (2024).

    Google Scholar 

  28. Sun, R. et al. Augmentation of the benzyl Isothiocyanate-Induced antiproliferation by NBDHEX in the HCT-116 human colorectal cancer cell line. Int. J. Mol. Sci. 26 (17), 8145 (2025).

    Google Scholar 

  29. Saltoğlu, G. T., Yalcin, S., Coşkun, B. F. & Arslan, H. S. Evaluating the cytotoxic and metastatic actions of cannabinol on HCT-116 colon cancer cells. Osmangazi Tıp Dergisi. 47 (4), 593–599 (2025).

    Google Scholar 

  30. Ikram, M., Javed, B., Raja, N. I. & Mashwani, Z. U. R. Biomedical potential of plant-based selenium nanoparticles: a comprehensive review on therapeutic and mechanistic aspects. Int. J. Nanomed. 16, 249–268 (2021).

  31. Nagime, P. V. et al. Biogenic selenium nanoparticles: a comprehensive update on the multifaceted application, stability, biocompatibility, risk, and opportunity. Zeitschrift für Naturforschung C, (0). (2025).

  32. Mohamed, A. A. et al. A combined therapy of meropenem–ZnO nanoparticles efficiently eliminates carbapenem-resistant Klebsiella pneumoniae biofilms, with reduced nephrotoxicity(in vitro). Lett. Appl. Microbiol. 77 (12), ovae136 (2024).

    Google Scholar 

  33. Shawky, M., Kalaba, M. H. & El-Sherbiny, G. M. Combined impact of biosynthesized selenium nanoparticles and Imipenem against carbapenem-resistant Pseudomonas aeruginosa and their associated virulence factors. BMC Microbiol. 25 (1), 235 (2025).

    Google Scholar 

  34. USEPA. Nanotechnology White Paper (Science Policy Council, USEPA, 2007).

  35. Mehrian, S. K. & Lima, D. R. Nanoparticles cyto and genotoxicity in plants: mechanisms and abnormalities. Environ. Nanotech Monit. Manag. 6, 184–193 (2016).

    Google Scholar 

  36. Pakrashi, S. et al. In vivo genotoxicity assessment of titanium dioxide nanoparticles by allium Cepa root tip assay at high exposure concentrations. PLoS ONE. 9, e87789 (2014).

    Google Scholar 

  37. Patel, S., Patel, P. & Bakshi, S. R. Titanium dioxide nanoparticles:an in vitro study of DNA binding, chromosome aberrationassay, and comet assay. Cytotechnology 69, 245–263 (2017).

    Google Scholar 

  38. George, N. M., Abdelhaliem, E. & Abdel-Haleem, M. Phytochemical profiling of bioactive metabolites in methanolic extract of two wild solanum species and evaluation of their antioxidant activity. JAPS: J. Anim. Plant. Sci. 32(6), 1713–1723 (2022).

  39. Abdelsalam, N. R. et al. Genotoxicity effects of silver nanoparticles on wheat (Triticum aestivum L.) root tip cells. Ecotox Environ. Safe. 155, 76–85 (2009).

    Google Scholar 

  40. Cox, A., Venkatachalam, P., Sahi, S. & Sharma, N. Silver and titanium dioxide nanoparticle toxicity in plants: a review of current research. Plant. Physiol. Biochem. 107, 147–163 (2016).

    Google Scholar 

  41. Abdelsattar, A. S., Dawoud, A. & Helal, M. A. Interaction of nanoparticles with biological macromolecules: A review of molecular Docking studies. Nanotoxicology 15 (1), 66–95 (2021).

    Google Scholar 

  42. Ibrahim, G. S., Marzouk, M. S., Elmansy, E. A. & Gomaa, M. Exploring the Antiviral, antioxidant Potentials, and UPLC-MS/MS characterization of Stenotrophomonas maltophilia GMM methanolic extract. Egypt. J. Chem. 68 (4), 549–559 (2025).

    Google Scholar 

  43. Ibrahim, S. S. S. et al. Recent progress in the green synthesis, characterization, and applications of selenium nanoparticles. BIO Integr. 5 (1), 969 (2024).

    Google Scholar 

  44. Elmesallamy, A., El-Zaidy, M., Younes, M. & Hussein, S. A. A. Green biosynthesized selenium nanoparticles and bioactive compounds by Gossypium Barbadense L extract and their cytotoxic potential. Egyptian J. Chemistry, 66(8), 439–448 ; https://doi.org/10.21608/ejchem.2022.171646.7132(2023).

  45. El-mesallamy, A. M. A. N. I., Alahwany, A. K., El-Zaidy, M. I. & Hussein, S. A. A. Eco-friendly synthesis of zinc oxide nanoparticles by garcinia cambogia and evaluation of their obesity and antimicrobial activities. Egypt. J. Chem. 67 (2), 17–27. https://doi.org/10.21608/ejchem.2023.212794.8008 (2024).

    Google Scholar 

  46. George, N. M., Abdelhaliem, E. & Abdel-Haleem, M. GC-MS identification of bioactive compounds in unripe solanum nigrum berries and assessment of antioxidant and anticancer activities. Lat Am. J. Pharm. 40 (11), 2702–2708 (2021).

    Google Scholar 

  47. Luo, L., Wang, Q. & Liao, Y. The inhibitors of CDK4/6 from a library of marine compound database: a pharmacophore, ADMET, molecular Docking and molecular dynamics study. Mar. Drugs. 20 (5), 319. https://doi.org/10.3390/md20050319 (2022).

    Google Scholar 

  48. Rondla, R. et al. Selective ATP competitive leads of CDK4: discovery by 3D-QSAR pharmacophore mapping and molecular Docking approach. Comput. Biol. Chem. 71, 224–229. https://doi.org/10.1016/j.compbiolchem.2017.11.005 (2017).

    Google Scholar 

  49. Srivastava, V., Devi, U., Nackwal, K., Ahmed, M. Z. & Shukla, P. K. In Silico identification of novel CDK4 inhibitors for retinoblastoma. Chem. Phys. Impact. 9, 100743. https://doi.org/10.1016/j.chphi.2024.100743 (2024).

    Google Scholar 

  50. Silva, G. H. & Monteiro, R. T. Toxicity assessment of silica nanoparticles on allium Cepa. Ecotox Environ. Contam. 12, 25–31 (2017).

    Google Scholar 

  51. Bartosiak, M., Giersz, J. & Jankowski, K. Analytical monitoring of selenium nanoparticles green synthesis using photochemical vapor generation coupled with MIP-OES and UV–Vis spectrophotometry. Microchem. J. 145, 1169–1175 (2019).

    Google Scholar 

  52. Ingole, A. R., Thakare, S. R., Khati, N. T., Wankhade, A. V. & Burghate, D. K. Green synthesis of selenium nanoparticles under ambient condition. Chalcogenide Lett. 7 (7), 485–489 (2010).

    Google Scholar 

  53. Satgurunathan, T., Bhavan, P. S. & Komathi, S. Green synthesis of selenium nanoparticles from sodium selenite using Garlic extract and its enrichment on artemia nauplii to feed the freshwater Prawn macrobrachium Rosenbergii post-larvae. Res. J. Chem. Environ. 21 (10), 1–12 (2017).

    Google Scholar 

  54. Elmesallamy, A., El-Zaidy, M., Younes, M. & Hussein, S. A. A. Green biosynthesized selenium nanoparticles and bioactive compounds by Gossypium Barbadense L extract and their cytotoxic potential. Egypt. J. Chem. 66 (8), 439–448 (2023).

    Google Scholar 

  55. Yang, N. & Li, W. H. Mango Peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crops Prod. 48, 81–88 (2013).

    Google Scholar 

  56. Elmosallamy, A., El-zaidy, M. & Hussein, S. A. A. Green synthesis of silver nanoparticles using mangifera indica L.(Musk) peels extract and evaluation of its cytotoxic activities. Egypt. J. Chem. 65 (7), 1–6 (2022).

    Google Scholar 

  57. Mulvaney, P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 12 (3), 788–800 (1996).

    Google Scholar 

  58. Lin, Z. H. & Wang, C. C. Evidence on the size-dependent absorption spectral evolution of selenium nanoparticles. Mater. Chem. Phys. 92 (2–3), 591–594 (2005).

    Google Scholar 

  59. Hernández-Díaz, J. A. et al. Antibacterial activity of biosynthesized selenium nanoparticles using extracts of calendula officinalis against potentially clinical bacterial strains. Molecules 26 (19), 5929 (2021).

    Google Scholar 

  60. Fardsadegh, B., Vaghari, H., Mohammad-Jafari, R., Najian, Y. & Jafarizadeh-Malmiri, H. Biosynthesis, characterization and antimicrobial activities assessment of fabricated selenium nanoparticles using pelargonium Zonale leaf extract. Green. Process. Synthesis. 8 (1), 191–198 (2019).

    Google Scholar 

  61. Deepa, B. & Ganesan, V. Bioinspiredsynthesis of selenium nanoparticles using flowers of catharanthus roseus (L.) G. Don. And peltophorum pterocarpum (DC.) backer ex Heyne–a comparison. Int. J. Chem. Technol. Res. 7, 725–733 (2015).

    Google Scholar 

  62. Prasad, K. S. & Selvaraj, K. Biogenic synthesis of selenium nanoparticles and their effect on as (III)-induced toxicity on human lymphocytes. Biol. Trace Elem. Res. 157 (3), 275–283 (2014).

    Google Scholar 

  63. Yedurkar, S., Maurya, C. & Mahanwar, P. Biosynthesis of zinc oxide nanoparticles using Ixora coccinea leaf extract—a green approach. Open. J. Synthesis Theory Appl. 5 (1), 1–14 (2016).

    Google Scholar 

  64. Surinut, P., Kaewsutthi, S. & Surakarnkul, R. Radical scavenging activity in fruit extracts. In III WOCMAP Congress on Medicinal and Aromatic Plants-Volume 5: Quality, Efficacy, Safety, Processing and Trade in Medicinal 679 (pp. 201–203); (2003)., February https://doi.org/10.17660/ActaHortic.2005.679.25

  65. Kokila, K., Elavarasan, N. & Sujatha, V. Diospyros Montana leaf extract-mediated synthesis of selenium nanoparticles and their biological applications. New J. Chem. 41 (15), 7481–7490 (2017).

    Google Scholar 

  66. Puri, A. et al. Plant-derived selenium nanoparticles: investigating unique morphologies, enhancing therapeutic uses, and leading the way in tailored medical treatments. Mater. Adv. 5 (9), 3602–3628 (2024).

    Google Scholar 

  67. El-Telbany, M. et al. Combination of meropenem and zinc oxide nanoparticles; antimicrobial synergism, exaggerated antibiofilm activity, and efficient therapeutic strategy against bacterial keratitis. Antibiotics 11 (10), 1374 (2022).

    Google Scholar 

  68. Chhabria, S. & Desai, K. Selenium nanoparticles and their applications. Encyclopedia Nanosci. Nanatechnol. 20, 1–32 (2016).

    Google Scholar 

  69. Nayak, V., Singh, K. R., Singh, A. K. & Singh, R. P. Potentialities of selenium nanoparticles in biomedical science. New J. Chem. 45 (6), 2849–2878 (2021).

    Google Scholar 

  70. Menon, S. & Shanmugam, V. K. Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. J. Trace Elem. Med Biol. 62, 126549 (2020).

    Google Scholar 

  71. Sakr, T. M., Korany, M. & Katti, K. V. Selenium nanomaterials in biomedicine—An overview of new opportunities in nanomedicine of selenium. J. Drug Deliv. Sci. Technol. 46, 223–233 (2018).

    Google Scholar 

  72. Hu, N. et al. Uniform and disperse selenium nanoparticles stabilized by inulin Fructans from Codonopsis pilosula and their anti-hepatoma activities. Int. J. Biol. Macromol. 203, 105–115 (2022).

    Google Scholar 

  73. EL-Baghdady, K. Z., Khalil, M. M., El Borhamy, M. I. & Meligi, G. Biosynthesis, characterization and cytotoxicity of selenium nanoparticles using Bacillus tropicus Ism 2. Egypt. Acad. J. Biol. Sci. G Microbiol. 11 (1), 47–57 (2019).

    Google Scholar 

  74. Li, H. et al. Arabinogalactan from Ixeris chinensis (Thunb.) Nakai as a stabilizer to decorate senps and enhance their anti-hepatocellular carcinoma activity via the mitochondrial pathway. J. Carbohydr. Chem. 41 (5), 329–345 (2022).

    Google Scholar 

  75. Mohamed, A. A., Seyam, E. A., Hussein, S. A. & Abdel-Haleem, M. Quercetin-mediated Repression of adrA Gene Expression in Escherichia Coli: Dual Roles in Antibiofilm Activity and Oxidative Stress Regulation 1–11 (Biologia, 2025).

  76. Soliman, M. K. & Salem, S. S. Uncovering the potential of biofabricated Ananas comosus Peel selenium nanoparticles for antibacterial, antibiofilm, suppression of virulence genes (can and LuxS), anticancer, and antioxidant properties. BMC Biotechnol. 25 (1), 1–21 (2025).

    Google Scholar 

  77. Mehrian, S. K. & De Lima, R. Nanoparticles Cyto and Genotoxicity in Plants: Mechanisms and Abnormalities Vol. 6, 184–193 (Environmental Nanotechnology, Monitoring & Management, 2016).

  78. Soliman, M. I. et al. Antibacterial, antioxidant activities, GC-mass characterization, and cyto/genotoxicity effect of green synthesis of silver nanoparticles using latex of Cynanchum acutum L. Plants 12 (1), 172 (2022).

    Google Scholar 

  79. Alsubaie, B. et al. Phytocytokines: Key Regulators of Plant Immunity and Emerging Tools for Sustainable Agriculture 102889 (Physiological and Molecular Plant Pathology, 2025).

  80. Badr, A. Cytotoxic effects of herbicide Nitralin on mistosis in allium Cepa root tips. Delta J. Sci. 3, 24–38 (1979).

    Google Scholar 

  81. Dey, H. & Shaili, S. Exploring the Phytochemical Diversity and Pharmacological Potentials of Balanite Aegyptiaca: A Review 53–63 (International Journal of Newgen Research in Pharmacy & Healthcare, 2023).

  82. Ibrahim, O. H. et al. Investigation of potential in vitro anticancer and antimicrobial activities of balanites aegyptiaca (L.) delile fruit extract and its phytochemical components. Plants 11 (19), 2621 (2022).

    Google Scholar 

  83. Zhou, F., Peterson, T., Fan, Z. & Wang, S. The commonly used stabilizers for phytochemical-based nanoparticles: stabilization effects, mechanisms, and applications. Nutrients 15 (18), 3881 (2023).

    Google Scholar 

  84. Malik, A. Q. et al. A review on the green synthesis of nanoparticles, their biological applications, and photocatalytic efficiency against environmental toxins. Environ. Sci. Pollut. Res. 30 (27), 69796–69823 (2023).

    Google Scholar 

  85. Dhaka, A., Raj, S., Githala, C. K., Mali, C., Trivedi, R. & S., & Balanites aegyptiaca leaf extract-mediated synthesis of silver nanoparticles and their catalytic dye degradation and antifungal efficacy. Front. Bioeng. Biotechnol. 10, 977101 (2022).

    Google Scholar 

  86. Prabhaker, N., Patel, A. & Jain, U. K. Development of silver nanoparticles of balanites aegyptiaca plant extract for the effective treatment of fungal diseases. Asian J. Pharm. Res. Dev. 12 (4), 43–47 (2024).

    Google Scholar 

  87. Alahmer, S., El-Noss, M. & Farid, A. Preparation of Chitosan nanoparticles loaded with balanites aegyptiaca extract for treatment of streptozotocin-induced diabetes in rats. Int. J. Biol. Macromol. 262, 130061 (2024).

    Google Scholar 

  88. Teklu, B., Kadiri, S. K. & Vidavalur, S. Green synthesis of copper oxide nanoparticles using balanites aegyptiaca stem bark extract and investigation of antibacterial activity. Results Chem. 6, 101152 (2023).

    Google Scholar 

  89. Vashishth, D. & Kataria, S. K. Active phytoconstituents from balanites aegyptiaca and pterocarpus marsupium and their role in antioxidant defense and cytotoxicity against liver (HepG2) and brain (U87MG) cancer cell lines. J. Appl. Nat. Sci. 17(2), 561–573 (2025).

  90. Xie, W., Guo, Z., Zhao, L. & Wei, Y. Metal-phenolic networks: facile assembled complexes for cancer theranostics. Theranostics 11 (13), 6407 (2021).

    Google Scholar 

  91. Okaiyeto, K. & Oguntibeju, O. O. African herbal medicines: adverse effects and cytotoxic potentials with different therapeutic applications. Int. J. Environ. Res. Public Health. 18 (11), 5988 (2021).

    Google Scholar 

  92. Rahim, S. A. & Al-Nahi, A. S. Cytogenetic effect of Tribulus terrestris fruit aqueous extract on Chromosome Aberrations and Mitotic Index in Sorafinib treated albino male rats. In BIO Web of Conferences (Vol. 139, p. 06002). EDP Sciences. (2024).

  93. Ismail, H. H., Hamdalla, M. S. & Al-Ahmed, H. I. Activity of crude phenolic extract from trigonella to reduce side effects of Paclitaxel drug on chromosomal Aberrations, sperm Parameters, and sperm DNA fragmentation. J. Bioscience Appl. Res. 11 (2), 490–501 (2025).

    Google Scholar 

  94. Manoharan, S., Govindaraju, I., Venkatesan, V. & Perumal, E. A comprehensive review of targeting early-stage biomarkers by small molecules and phytochemicals in hepatocellular carcinoma. Phytochem. Rev. 1–43. (2025). https://doi.org/10.1007/s11101-025-10165-y

Download references

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Author information

Authors and Affiliations

  1. Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt

    Mohamed I. M. El-Zaidy

  2. High Technological Institute for Applied Health Sciences, K 36 Cairo–Ismailia Road, Cairo, Egypt

    Heba G. Ayoub

  3. Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates

    Gehan El-Akabawy

  4. Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates

    Gehan El-Akabawy

  5. Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt

    Gehan El-Akabawy

  6. Botany and Microbiology Department, Faculty of Science, Arish University, Al-Arish, 45511, Egypt

    Amira A. Ibrahim

  7. Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt

    Mohamed Abdel-Haleem

Authors
  1. Mohamed I. M. El-Zaidy
    View author publications

    Search author on:PubMed Google Scholar

  2. Heba G. Ayoub
    View author publications

    Search author on:PubMed Google Scholar

  3. Gehan El-Akabawy
    View author publications

    Search author on:PubMed Google Scholar

  4. Amira A. Ibrahim
    View author publications

    Search author on:PubMed Google Scholar

  5. Mohamed Abdel-Haleem
    View author publications

    Search author on:PubMed Google Scholar

Contributions

MI: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Validation, Writing – original draft, Writing – review & editing (Lead author; main contributor); HA: Supervision, Project administration, Data curation, Investigation, Writing – review & editing; GE: Supervision, Project administration, Conceptualization, Formal analysis, Writing – review & editing; AAI: Supervision, Methodology, Project administration, Conceptualization, Formal analysis, Writing – review & editing; MAH: Conceptualization, Formal analysis, Methodology, Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing (Senior/corresponding author).

Corresponding authors

Correspondence to Mohamed I. M. El-Zaidy, Amira A. Ibrahim or Mohamed Abdel-Haleem.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Zaidy, M.I.M., Ayoub, H.G., El-Akabawy, G. et al. Eco-friendly synthesis of Balanites aegyptiaca-derived selenium nanoparticles: extract and assessment of their anticancer, antimicrobial, cytogenetic and molecular docking insights. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35358-z

Download citation

  • Received: 26 September 2025

  • Accepted: 05 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-35358-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Balanites aegyptiaca
  • SeNPs
  • Phenolic compounds
  • Anticancer activity
  • Antimicrobial activity
  • Chromosomal aberrations
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer