Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Acoustic and thermal insulation properties of rubberhemp shive composite bonded with regenerated polyurethane resin
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 08 January 2026

Acoustic and thermal insulation properties of rubberhemp shive composite bonded with regenerated polyurethane resin

  • Tomas Astrauskas1,
  • Giedrius Balčiūnas2,
  • Jolita Bradulienė1,
  • Robert Ružickij1,
  • Andrej Naimušin1 &
  • …
  • Tomas Januševičius1 

Scientific Reports , Article number:  (2026) Cite this article

  • 607 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Energy science and technology
  • Engineering
  • Materials science

Abstract

Studies on recycled materials for sound absorption and thermal insulation applications has emerged in recent years. This paper investigates the composite material made of the rubber granules and hemp shives. The rubber granule was gained from tyre recycling factory, and hemp shives which is still considered as waste in hemp fibre production. This paper analyses the hemp shives influence on acoustic and non-acoustic properties of rubber granule and hemp shive (RGHS) composites bonded with regenerated polyurethane resin. Tested composite material samples varied in rubber grain (RG) size (0.5–2 mm; 24 mm; 4–6 mm) and hemp shives (HS) (avg. length 7 mm; avg. width 2.2 mm). In this study the HS quantity was controlled and increased by ratio from 0 to 1:1. Samples of four thicknesses (10, 20, 30, 50 mm) were tested to find the HS influence on sound absorption coefficient. For non-acoustic parameters estimation gas pycnometry and inverse characterisation method according to Johnson–Champoux–Allard (JCA) model was used. The results showed that some of the parameters were influenced by change of hemp shive quantity in the composite panel. HS content in the composite increment influenced the airflow resistivity decrement by 50–57%, bulk density decrement by 21–28%, porosity increment by 12–17%. The acoustic sound absorption performance was tested using impedance tube transfer function method (ISO 10354–2). The peak sound absorption coefficient varied from 0.60–0.97 depending on the sample thickness and configuration. The correlation between hemp shive quantity and sound absorption was not significant. The test of thermal conductivity according to EN 12664 showed that minimum value of the RGHS panels of thermal conductivity coefficient was 0.07 W/m·K. Such results indicate that RGHS could be developed as multi-purpose material for sound absorption and thermal insulation applications. The aim of this paper was to incorporate HS into rubber granule panels and to investigate its influence on the acoustic and non-acoustic properties on the RGHS composite panels.

Similar content being viewed by others

A comparative study on acoustical properties using waste recycled porous materials for environmental sustainability

Article Open access 21 July 2025

Ultralight graphene oxide/polyvinyl alcohol aerogel for broadband and tuneable acoustic properties

Article Open access 19 May 2021

Acoustic performance optimization of natural-fiber micro-perforated panels backed by an optimized polyurethane–fibrogranule composite

Article Open access 17 January 2026

Data availability

The data that support the findings of this study are available from corresponding author but restrictions apply to the availability of these data, which were used under license for the current study, and so are not publicly available. Data are however available from the authors upon reasonable request and with permission of Innovation Agency Lithuania.

References

  1. Kurniawan, T. A. et al. Unlocking synergies between waste management and climate change mitigation to accelerate decarbonization through circular-economy digitalization in Indonesia. Sustain Prod Consum 46, 522–542 (2024).

    Google Scholar 

  2. Kacker, S., Rupesh, K., Singh, H. & Moien Raja, M. Innovations In Road Traffic Noise Mitigation Through Pavement Solutions: A Comprehensive Literature Review. 2024.

  3. Riccardi Chiara and Leandri, P. and L. M. and L. M. S 2024. Field Monitoring of Low Noise Surface Mixtures Modified with Recycled Tire Rubber. in Proceedings of the 10th International Conference on Maintenance and Rehabilitation of Pavements (ed. Pereira Paulo and Pais, J.) 393–404 (Springer Nature Switzerland, Cham, 2024).

  4. Nwokediegwu, Q. S. et al. Advanced materials for sustainable construction: a review of innovations and environmental benefits. Eng. Sci. Technol. J. 5, 201–218 (2024).

    Google Scholar 

  5. Shooshtarian, S. et al. Utilisation of certification schemes for recycled products in the Australian building and construction sector. Bus Strategy Environ 33, 1759–1777 (2024).

    Google Scholar 

  6. Abramczyk, N., Żuk, D. & Jakubowski, P. Tests of acoustic insulation of multilayer composite modified with rubber recyclate. Vib. Phys. Syst. https://doi.org/10.21008/j.0860-6897.2024.1.04 (2024).

    Google Scholar 

  7. Balmori, J. A. et al. The use of waste tyre rubber recycled products in lightweight timber frame systems as acoustic insulation: a comparative analysis of acoustic performance. Buildings 14, 35 (2024).

    Google Scholar 

  8. Goevert, D. The value of different recycling technologies for waste rubber tires in the circular economy: A review. Frontiers Sustain. 4, 1282805 (2023).

    Google Scholar 

  9. Ahmed, K. Z. & Faizan, M. Comprehensive Characterization of Waste Tire Rubber Powder. J. Institution Eng (India): series E. 105, 11–20 (2024).

    Google Scholar 

  10. Archibong, F. N., Sanusi, O. M., Médéric, P. & Aït Hocine, N. An overview on the recycling of waste ground tyre rubbers in thermoplastic matrices: Effect of added fillers. Resour Conserv Recycl 175, 105894 (2021).

    Google Scholar 

  11. Weng, F. et al. Structure and properties of tough starch modified with rubber-based polyurethane microparticles. J. Thermoplast. Compos. Mater. 33, 817–827 (2020).

    Google Scholar 

  12. Praw, M. Polyurethane coatings: A brief overview. Journal of Protective Coatings and Linings 30, 34–39 (2013).

    Google Scholar 

  13. Vilniškis, T. & Januševičius, T. Experimental research and transfer matrix method for analysis of transmission loss in multilayer constructions with devulcanized waste rubber. Sustainability 15, 12774 (2023).

    Google Scholar 

  14. Vilniškis, T. & Januševičius, T. RESEARCH of insertion loss of multilayered construction with devulcanized waste rubber. Environ. Clim. Technolo. 28, 120–134 (2024).

    Google Scholar 

  15. Astrauskas, T., Grubliauskas, R. & Januševičius, T. Optimization of sound-absorbing and insulating structures with 3D printed recycled plastic and tyre rubber using the TOPSIS approach. J. Vib. Control 30, 1772–1782 (2024).

    Google Scholar 

  16. Malaiškienė, J., Astrauskas, T., Januševičius, T., Kizinievič, O. & Kizinievič, V. Potential applications of rubber buffing dust and recovered crumb rubber in cement concrete. Results in Engineering 24, 103266 (2024).

    Google Scholar 

  17. Xu, L. et al. Sound absorption characteristics of rubberised porous asphalt mixture. Road Materials and Pavement Design https://doi.org/10.1080/14680629.2025.2465571 (2025).

    Google Scholar 

  18. Tripathi, A., Jha, N. K., Hota, R. N., Kumar, A. & Tyagi, R. Green sound-absorbing material prepared by using natural fiber for building acoustics. Proceedings of the Institution of Mechanical Engineers, Part E: J. Process Mech. Eng. https://doi.org/10.1177/09544089241253973 (2024).

  19. Wang, Y., Du, T. & Ma, wenkai, Song, P. & Chen, Y,. Research on mechanics and acoustic properties of Jute fiber composite material. Heliyon 10, e33869 (2024).

    Google Scholar 

  20. Senthilrajan, S. et al. Mechanical, vibration damping and acoustics characteristics of hybrid aloe vera /jute/polyester composites. J. Market. Res. 31, 2402–2413 (2024).

    Google Scholar 

  21. Cucharero, J. et al. Influence of moisture on the sound absorption properties of wood-based pulp fibre foams. Materials Today Sustainability 27, 100854 (2024).

    Google Scholar 

  22. Ahmed, A. T. M. F., Islam, M. Z., Mahmud, M. S., Sarker, M. E. & Islam, M. R. Hemp as a potential raw material toward a sustainable world: A review. Heliyon. https://doi.org/10.1016/j.heliyon.2022.e08753 (2022).

    Google Scholar 

  23. Kaminski, K. P., Hoeng, J., Goffman, F., Schlage, W. K. & Latino, D. Opportunities, Challenges, and Scientific Progress in Hemp Crops. Molecules https://doi.org/10.3390/molecules29102397 (2024).

    Google Scholar 

  24. Kołodziej, J. & Kicińska-Jakubowska, A. Utilization of Hemp Shives for Various Purposes:a Review. J. Nat. Fibers 22, 2448016 (2025).

    Google Scholar 

  25. Bourdot, A. et al. Characterization of a hemp-based agro-material: Influence of starch ratio and hemp shive size on physical, mechanical, and hygrothermal properties. Energy Build 153, 501–512 (2017).

    Google Scholar 

  26. Delhomme, F. et al. Mechanical, Acoustic and Thermal Performances of Australian Hempcretes. Lecture Notes in Civil Engineering 203, 753–761 (2022).

    Google Scholar 

  27. Fiedler, T. & Pedersen, J. Evaluating the thermal conductivity of hemp-based insulation. Materials 18, 1723 (2025).

    Google Scholar 

  28. Kremensas, A. et al. The impact of hot-water-treated fibre hemp shivs on the water resistance and thermal insulating performance of corn starch bonded biocomposite boards. Ind Crops Prod 137, 290–299 (2019).

    Google Scholar 

  29. Kosiński, P. et al. Thermal properties of hemp shives used as insulation material in construction industry. Energies (Basel) 15, 2461 (2022).

    Google Scholar 

  30. Borowczak, M., Sobczyk, K., Leluk, K. & Ludwiczak, J. Environmentally friendly poly(butylene succinate) composites with hemp shives | Przyjazne dla środowiska kompozyty poli(bursztynianu butylenu) z paździerzami konopnymi. Polimery Polymers 70, 240–247 (2025).

    Google Scholar 

  31. Brzyski, P., Jóźwiak, M., Siwiec, J., Sinka, M. & Medved, I. Influence of compaction direction on selected thermal and moisture properties of a lightweight composite based on magnesium binder and organic filler. J. Phys. Conferen. Ser. 2628, 012002 (2023).

    Google Scholar 

  32. Brzyski, P. et al. Influence of the direction of mixture compaction on the selected properties of a hemp-lime composite. Materials 14, 4629 (2021).

    Google Scholar 

  33. Piątkiewicz, W., Narloch, P., Wólczyńska, Z. & Mańczak, J. Effect of hemp shive granulometry on the thermal conductivity of hemp-lime composites. Materials 18, 3458 (2025).

    Google Scholar 

  34. Collet, F. & Pretot, S. Thermal conductivity of hemp concretes: Variation with formulation, density and water content. Constr Build Mater 65, 612–619 (2014).

    Google Scholar 

  35. Yang, Y.-L., Zhang, T., Reddy, K. R., Li, J.-S. & Liu, S.-Y. Thermal conductivity of scrap tire rubber-sand composite as insulating material: Experimental investigation and predictive modeling. Constr Build Mater. 332, 127387 (2022).

    Google Scholar 

  36. Abdel Kader, M. M., Abdel-wehab, S. M., Helal, M. A. & Hassan, H. H. Evaluation of thermal insulation and mechanical properties of waste rubber/natural rubber composite. Hbrc Journal 8, 69–74 (2012).

    Google Scholar 

  37. Benazzouk, A., Douzane, O., Mezreb, K., Laidoudi, B. & Quéneudec, M. Thermal conductivity of cement composites containing rubber waste particles: Experimental study and modelling. Constr Build Mater 22, 573–579 (2008).

    Google Scholar 

  38. Lee, J., Yun, T. S. & Choi, S.-U. The effect of particle size on thermal conduction in granular mixtures. Materials 8, 3975–3991 (2015).

    Google Scholar 

  39. Olmos, D., Vela, R., Alvarez-Junceda, A. & González-Benito, J. Rubber particles from tires out of use as toughness modifiers of epoxy-based thermosets. J. Adhes. 89, 697–713 (2013).

    Google Scholar 

  40. Wang, Y. & Wang, Y. Experimental study and theoretical modeling of effective thermal conductivity of waste tire rubber composite concrete under different relative humidity. J. Build. Eng. 111, 113605 (2025).

    Google Scholar 

  41. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676–682 (2012).

    Google Scholar 

  42. Hussain, A., Calabria-Holley, J., Jiang, Y. & Lawrence, M. Modification of hemp shiv properties using water-repellent sol–gel coatings. J Solgel Sci Technol 86, 187–197 (2018).

    Google Scholar 

  43. Hisbani, N., Shafiq, N., Shams, M. A., Farhan, S. A. & Zahid, M. Properties of concrete containing crumb rubber as partial replacement of fine Aggregate—A review. Hybrid Advances 10, 100481 (2025).

    Google Scholar 

  44. Gomez, T. S. et al. Sound absorption behavior of repurposed waste fibers: Effects of fiber size, density, and binder concentration. Appl. Acoust. 202, 109174 (2023).

    Google Scholar 

  45. Akustika. Akustinių savybių nustatymas interferometrais. 2 dalis. Dviejų mikrofonų būdas normaliosios garso sugerties koeficientui ir normaliajai pilnutinei paviršinei varžai nustatyti (ISO 10534–2:2023) / Lietuvos standartizacijos departamentas. Acoustics - Determination of acoustic properties in impedance tubes - Part 2: Two-microphone technique for normal sound absorption coefficient and normal surface impedance (ISO 10534–2:2023) Preprint at (2023).

  46. Test Method for Normal Incidence Determination of Porous Material Acoustical Properties Based on the Transfer Matrix Method. https://doi.org/10.1520/E2611-24 (2024).

  47. Allard, J. & Atalla, N 2009. Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials Second Edition. (2009)

  48. Peng, X. et al. Acoustic-modeling of random fibrous materials. J Sound Vib 600, 118897 (2025).

    Google Scholar 

  49. Liu, S., Chen, W. & Zhang, Y. Design optimization of porous fibrous material for maximizing absorption of sounds under set frequency bands. Appl. Acoust. 76, 319–328 (2014).

    Google Scholar 

  50. Akustika. Orinės varžos nustatymas. 1 dalis. Statinio oro srauto metodas (ISO 9053–1:2018) / Lietuvos standartizacijos departamentas. Acoustics - Determination of airflow resistance - Part 1: Static airflow method (ISO 9053–1:2018) Preprint at (2019).

  51. Olny, X. & Panneton, R. Acoustical determination of the parameters governing thermal dissipation in porous media. J Acoust Soc Am 123, 814–824 (2008).

    Google Scholar 

  52. Jaouen, L., Gourdon, E. & Glé, P. Estimation of all six parameters of Johnson-Champoux-Allard-Lafarge model for acoustical porous materials from impedance tube measurements. J Acoust Soc Am 148, 1998–2005 (2020).

    Google Scholar 

  53. Voronina, N. N. & Horoshenkov, K. V. A new empirical model for the acoustic properties of loose granular media. Appl. Acoust. 64, 415–432 (2003).

    Google Scholar 

  54. Attenborough, K. Acoustical characteristics of rigid fibrous absorbents and granular materials. J Acoust Soc Am 73, 785–799 (1983).

    Google Scholar 

  55. Champoux, Y. & Allard, J. Dynamic tortuosity and bulk modulus in air-saturated porous media. J Appl Phys 70, 1975–1979 (1991).

    Google Scholar 

  56. Astrauskas, T., Grubliauskas, R. & Januševičius, T. Optimization of sound-absorbing and insulating structures with 3D printed recycled plastic and tyre rubber using the TOPSIS approach. J. Vib. Control 30, 1772–1782 (2023).

    Google Scholar 

  57. Li, X., Liu, B. & Wu, Q. Enhanced low-frequency sound absorption of a porous layer mosaicked with perforated resonator. Polymers 14, 223 (2022).

    Google Scholar 

  58. OriginLab. Origin.

  59. Smith, D. S., Puech, F., Nait-Ali, B., Alzina, A. & Honda, S. Grain boundary thermal resistance and finite grain size effects for heat conduction through porous polycrystalline alumina. Int J Heat Mass Transf 121, 1273–1280 (2018).

    Google Scholar 

  60. Ḿaderuelo-Sanz, R., Morillas, J. M. B., Ḿartin-Castizo, M., Escobar, V. G. & Gozalo, G. R. Acoustical performance of porous absorber made from recycled rubber and polyurethane resin. Latin American Journal of Solids and Structures 10, 585–600 (2013).

    Google Scholar 

  61. Delhomme, F. et al 2022. Mechanical, Acoustic and Thermal Performances of Australian Hempcretes. CIGOS 2021, Emerging Technologies and Applications for Green Infrastructure . In: Ha-Minh, C., Tang, A. M., Bui, T. Q., Vu, X. H. & Huynh, D. V. K. (eds) Springer Nature Singapore, Singapore. 753–761

  62. Glé, P., Gourdon, E. & Arnaud, L. Modelling of the acoustical properties of hemp particles. Constr Build Mater 37, 801–811 (2012).

    Google Scholar 

  63. Smirnova, O. M., de Navascués, I., Mikhailevskii, V. R., Kolosov, O. I. & Skolota, N. S. Sound-Absorbing Composites with Rubber Crumb from Used Tires. Appl. Sci. 11, 7347 (2021).

    Google Scholar 

  64. Zine, O. et al. Valorization of Moroccan Hemp Waste: Study of the Possibility of its Use in Thermal and Acoustical Insulation of Buildings. Int. J. Eng. Res. Afr. 65, 35–54 (2023).

    Google Scholar 

  65. Gumanová, V., Sobotová, L., Dzuro, T., Badida, M. & Moravec, M. Experimental Survey of the Sound Absorption Performance of Natural Fibres in Comparison with Conventional Insulating Materials. Sustainability 14, 4258 (2022).

    Google Scholar 

  66. Jung, J., Jafari, M. & Ahn, J. Experimental evaluation of the thermal conductivity of silica sands with varying porosity and particle size. in Geotechnical Special Publication vol. 0 773–780 (2017).

  67. Pochwała, S., Makiola, D., Anweiler, S. & Böhm, M. The heat conductivity properties of hemp-lime composite material used in single-family buildings. Materials 13, 1011 (2020).

    Google Scholar 

  68. Kubiś, M. et al. Analysis of the Thermal Conductivity of a Bio-Based Composite Made of Hemp Shives and a Magnesium Binder. Energies 15, 5490 (2022).

    Google Scholar 

  69. Fadhil, M. A., Al-Moameri, H. H. & Mohammed, T. W. The Effect of Maximum Reaction Temperature of Polyurethane Foam on the Effective Thermal Conductivity. Journal of Engineering and Sustainable Development 29, 209–218 (2025).

    Google Scholar 

  70. Lakatos, Á., Csík, A., Lucchi, E. & La Rosa, A. D. Thermal performance and ageing effects to model the life cycle assessment of heat-protective thermal insulation materials in pipe systems. Int. Commun. Heat Mass Transfer 164, 108819 (2025).

    Google Scholar 

Download references

Funding

Research was conducted as part of the execution of Project "Mission-driven Implementation of Science and Innovation Programmes" (No. 02–002-P-0001), funded by the Economic Revitalization and Resilience Enhancement Plan "New Generation Lithuania".

Author information

Authors and Affiliations

  1. Research Institute of Environmental Protection, Vilnius Gediminas Technical University, Saulėtekio al. 11, Vilnius, Lithuania

    Tomas Astrauskas, Jolita Bradulienė, Robert Ružickij, Andrej Naimušin & Tomas Januševičius

  2. Laboratory of Thermal Insulating Materials and Acoustics, Vilnius Gediminas Technical University, Linkmenų g. 28, Vilnius, Lithuania

    Giedrius Balčiūnas

Authors
  1. Tomas Astrauskas
    View author publications

    Search author on:PubMed Google Scholar

  2. Giedrius Balčiūnas
    View author publications

    Search author on:PubMed Google Scholar

  3. Jolita Bradulienė
    View author publications

    Search author on:PubMed Google Scholar

  4. Robert Ružickij
    View author publications

    Search author on:PubMed Google Scholar

  5. Andrej Naimušin
    View author publications

    Search author on:PubMed Google Scholar

  6. Tomas Januševičius
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Tomas Astrauskas: Methodology, Software, Validation, Formal analysis, Investigation, Data Curation, Writing—Original Draft, Visualization. Jolita Bradulienė: Investigation, Data Curation, Writing—Original Draft. Robert Ružickij: Methodology, Validation, Investigation, Data Curation, Writing—Review & Editing. Andrej Naimušin: Methodology, Investigation, Writing—Review & Editing. Giedrius Balčiūnas: Methodology, Validation, Formal analysis, Investigation, Data Curation, Writing—Review & Editing. Tomas Januševičius: Conceptualization, Resources, Writing—Review & Editing, Supervision, Project administration, Funding acquisition.

Corresponding author

Correspondence to Tomas Astrauskas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Astrauskas, T., Balčiūnas, G., Bradulienė, J. et al. Acoustic and thermal insulation properties of rubberhemp shive composite bonded with regenerated polyurethane resin. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35411-x

Download citation

  • Received: 02 September 2025

  • Accepted: 06 January 2026

  • Published: 08 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35411-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Sound absorption
  • Thermal conductivity
  • Rubber granule
  • Hemp shive
  • Composite materials
  • Recycling
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing