Abstract
Eye movements during visual mental imagery resemble those made during prior perception. Across two experiments, we investigated whether eye movements during imagery reflect a part-by-part generation of mental images, by comparing gaze patterns during mental imagery to those during part-based viewing (using a gaze-contingent window, GCW) and to those during holistic viewing (using an artificial scotoma, AS). In Experiment 1, participants freely encoded and imagined pictures before reinspecting them either part-by-part (GCW condition), or holistically (AS condition). The results show that fixation scanpaths (MultiMatch) and refixation patterns (recurrence quantification analysis) during mental imagery largely mirror those during GCW viewing. In Experiment 2, we examined whether this effect depends on prior perceptual encoding. Pictures were initially encoded either freely, with the AS, or with the GCW, and subsequently imagined. The results show that regardless of how the pictures were initially encoded, gaze patterns during mental imagery systematically resembled part-based perception. The current study provides direct evidence that eye movements during mental imagery reflect a part-by-part generation process of the imagined content, independent of prior perceptual encoding.
Similar content being viewed by others
Data availability
All materials, data, and analysis scripts are made publicly available: https://osf.io/zaht8/?view_only=bea57fcc57c14c05aeb6815e4d080839.
References
Altmann, G. T. M. Language-mediated eye movements in the absence of a visual world: The ‘blank screen paradigm’. Cognition93, B79–B87. https://doi.org/10.1016/j.cognition.2004.02.005 (2004).
Johansson, R., Holsanova, J. & Holmqvist, K. Pictures and spoken descriptions elicit similar eye movements during mental imagery, both in light and in complete darkness. Cognit. Sci.30, 1053–1079. https://doi.org/10.1207/s15516709cog0000_86 (2006).
Ferreira, F., Apel, J. & Henderson, J. M. Taking a new look at looking at nothing. Trends Cognit. Sci.12, 405–410. https://doi.org/10.1016/j.tics.2008.07.007 (2008).
Martarelli, C. S. & Mast, F. W. Eye movements during long-term pictorial recall. Psychol. Res.77, 303–309. https://doi.org/10.1007/s00426-012-0439-7 (2013).
Johansson, R., Holsanova, J., Dewhurst, R. & Holmqvist, K. Eye movements during scene recollection have a functional role, but they are not reinstatements of those produced during encoding. J. Exp. Psychol. Hum. Percept. Perform.38, 1289–1314. https://doi.org/10.1037/a0026585 (2012).
Laeng, B. & Teodorescu, D.-S. Eye scanpaths during visual imagery reenact those of perception of the same visual scene. Cognit. Sci.26, 207–231. https://doi.org/10.1207/s15516709cog2602_3 (2002).
Laeng, B., Bloem, I. M., D’Ascenzo, S. & Tommasi, L. Scrutinizing visual images: The role of gaze in mental imagery and memory. Cognition131, 263–283. https://doi.org/10.1016/j.cognition.2014.01.003 (2014).
Johansson, R. & Johansson, M. Look here, eye movements play a functional role in memory retrieval. Psychol. Sci.25, 236–242. https://doi.org/10.1177/0956797613498260 (2014).
Foulsham, T. & Kingstone, A. Fixation-dependent memory for natural scenes: An experimental test of scanpath theory. J. Exp. Psychol. Gen.142, 41–56. https://doi.org/10.1037/a0028227 (2013).
Mast, F. W. & Kosslyn, S. M. Eye movements during visual mental imagery. Trends Cognit. Sci.6, 271–272. https://doi.org/10.1016/S1364-6613(02)01931-9 (2002).
Richardson, D. C. & Spivey, M. J. Representation, space and hollywood squares: Looking at things that aren’t there anymore. Cognition76, 269–295. https://doi.org/10.1016/S0010-0277(00)00084-6 (2000).
Hoover, M. A. & Richardson, D. C. When facts go down the rabbit hole: Contrasting features and objecthood as indexes to memory. Cognition108, 533–542. https://doi.org/10.1016/j.cognition.2008.02.011 (2008).
Kumcu, A. & Thompson, R. L. Spatial interference and individual differences in looking at nothing for verbal memory. In Proceedings of the Annual Meeting of the Cognitive Science Society. Vol. 38 (2016).
Hesslow, G. The current status of the simulation theory of cognition. Brain Res.1428, 71–79. https://doi.org/10.1016/j.brainres.2011.06.026 (2012).
Moulton, S. T. & Kosslyn, S. M. Imagining predictions: Mental imagery as mental emulation. Philos. Trans. R. Soc. B Biol. Sci.364, 1273–1280. https://doi.org/10.1098/rstb.2008.0314 (2009).
Dijkstra, N., Zeidman, P., Ondobaka, S., van Gerven, M.A. J. & Friston, K. Distinct top-down and bottom-up brain connectivity during visual perception and imagery. Sci. Rep.7, 5677. https://doi.org/10.1038/s41598-017-05888-8 (2017).
Xie, S., Kaiser, D. & Cichy, R. M. Visual imagery and perception share neural representations in the alpha frequency band. Curr. Biol.30, 2621-2627.e5. https://doi.org/10.1016/j.cub.2020.04.074 (2020).
Dijkstra, N., Bosch, S. E. & Gerven, M. A.J.V. Vividness of visual imagery depends on the neural overlap with perception in visual areas. J. Neurosci.37, 1367–1373. https://doi.org/10.1523/JNEUROSCI.3022-16.2016 (2017).
Pearson, J., Clifford, C. W. G. & Tong, F. The functional impact of mental imagery on conscious perception. Curr. Biol.18, 982–986. https://doi.org/10.1016/j.cub.2008.05.048 (2008).
Dijkstra, N., Mazor, M., Kok, P. & Fleming, S. Mistaking imagination for reality: Congruent mental imagery leads to more liberal perceptual detection. Cognition212, 104719. https://doi.org/10.1016/j.cognition.2021.104719 (2021).
Moro, V., Berlucchi, G., Lerch, J., Tomaiuolo, F. & Aglioti, S. M. Selective deficit of mental visual imagery with intact primary visual cortex and visual perception. Cortex J. Devot. Study Nervous Syst. Behav.44, 109–118. https://doi.org/10.1016/j.cortex.2006.06.004 (2008).
Behrmann, M., Winocur, G. & Moscovitch, M. Dissociation between mental imagery and object recognition in a brain-damaged patient. Nature359, 636–637. https://doi.org/10.1038/359636a0 (1992).
Behrmann, M., Moscovitch, M. & Winocur, G. Intact visual imagery and impaired visual perception in a patient with visual agnosia. J. Exp. Psychol. Hum. Percept. Perform.20, 1068–1087. https://doi.org/10.1037/0096-1523.20.5.1068 (1994).
Hebb, D. O. Concerning imagery. Psychol. Rev.75, 466–477. https://doi.org/10.1037/h0026771 (1968).
Neisser, U. Cognitive psychology. In Century Psychology Series (Appleton-Century-Crofts, 1967) (OCLC: 192730).
Bourlon, C., Oliviero, B., Wattiez, N., Pouget, P. & Bartolomeo, P. Visual mental imagery: What the head’s eye tells the mind’s eye. Brain Res.1367, 287–297. https://doi.org/10.1016/j.brainres.2010.10.039 (2011).
Gurtner, L. M., Bischof, W. F. & Mast, F. W. Recurrence quantification analysis of eye movements during mental imagery. J. Vis.19, 17. https://doi.org/10.1167/19.1.17 (2019).
Gurtner, L. M., Hartmann, M. & Mast, F. W. Eye movements during visual imagery and perception show spatial correspondence but have unique temporal signatures. Cognition210, 104597. https://doi.org/10.1016/j.cognition.2021.104597 (2021).
Gurtner, L. M., Bischof, W. F. & Mast, F. W. Gaze restriction and reactivation of place-bound content drive eye movements during mental imagery. J. Cognit.6. https://doi.org/10.5334/joc.316 (2023).
Peelen, M. V., Berlot, E. & de Lange, F. P. Predictive processing of scenes and objects. Nat. Rev. Psychol.3, 13–26. https://doi.org/10.1038/s44159-023-00254-0 (2024).
Kosslyn, S. M., Thompson, W. L. & Ganis, G. The Case for Mental Imagery (Oxford University Press, 2006).
van Diepen, P. M. J., Wampers, M. & d’Ydewalle, G. Functional division of the visual field: Moving masks and moving windows. In Eye Guidance in Reading and Scene Perception. 337–355. https://doi.org/10.1016/B978-008043361-5/50016-X (Elsevier Science Ltd, 1998).
Hagen, S. et al. A perceptual field test in object experts using gaze-contingent eye tracking. Sci. Rep.13, 11437. https://doi.org/10.1038/s41598-023-37695-9 (2023).
Van Belle, G. et al. Impairment of holistic face perception following right occipito-temporal damage in prosopagnosia: converging evidence from gaze-contingency. Neuropsychologia49, 3145–3150. https://doi.org/10.1016/j.neuropsychologia.2011.07.010 (2011).
Van Belle, G., De Graef, P., Verfaillie, K., Rossion, B. & Lefèvre, P. Face inversion impairs holistic perception: Evidence from gaze-contingent stimulation. J. Vis.10. https://doi.org/10.1167/10.5.10 (2010).
Bombari, D., Mast, F. W. & Lobmaier, J. S. Featural, configural, and holistic face-processing strategies evoke different scan patterns. Perception38, 1508–1521. https://doi.org/10.1068/p6117 (2009).
Schwarzer, G., Huber, S. & Dümmler, T. Gaze behavior in analytical and holistic face processing. Mem. Cognit.33, 344–354. https://doi.org/10.3758/BF03195322 (2005).
Brandt, S. A. & Stark, L. W. Spontaneous eye movements during visual imagery reflect the content of the visual scene. J. Cognit. Neurosci.9, 27–38. https://doi.org/10.1162/jocn.1997.9.1.27 (1997).
Hassabis, D. & Maguire, E. A. The construction system of the brain. Philos. Trans. R. Soc. B Biol. Sci.364, 1263–1271. https://doi.org/10.1098/rstb.2008.0296 (2009).
Damiano, C. & Walther, D. B. Distinct roles of eye movements during memory encoding and retrieval. Cognition184, 119–129. https://doi.org/10.1016/j.cognition.2018.12.014 (2019).
Wynn, J. S., Ryan, J. D. & Buchsbaum, B. R. Eye movements support behavioral pattern completion. Proc. Natl. Acad. Sci.117, 6246–6254. https://doi.org/10.1073/pnas.1917586117 (2020).
Martarelli, C. S. & Mast, F. W. Pictorial low-level features in mental images: Evidence from eye fixations. Psychol. Res.86, 350–363. https://doi.org/10.1007/s00426-021-01497-3 (2022).
Anderson, N. C., Bischof, W. F., Laidlaw, K. E. W., Risko, E. F. & Kingstone, A. Recurrence quantification analysis of eye movements. Behav. Res. Methods45, 842–856. https://doi.org/10.3758/s13428-012-0299-5 (2013).
Ballard, D. H., Hayhoe, M. M. & Pelz, J. B. Memory representations in natural tasks. J. Cognit. Neurosci.7, 66–80. https://doi.org/10.1162/jocn.1995.7.1.66 (1995).
Ryan, J. D. & Villate, C. Building visual representations: The binding of relative spatial relations across time. Vis. Cognit.17, 254–272. https://doi.org/10.1080/13506280802336362 (2009).
Meghanathan, R. N., Nikolaev, A. R. & van Leeuwen, C. Refixation patterns reveal memory-encoding strategies in free viewing. Attent. Percept. Psychophys.81, 2499–2516. https://doi.org/10.3758/s13414-019-01735-2 (2019).
Scholz, A., Klichowicz, A. & Krems, J. F. Covert shifts of attention can account for the functional role of “eye movements to nothing’’. Mem. Cognit.46, 230–243. https://doi.org/10.3758/s13421-017-0760-x (2018).
Kozhevnikov, M., Kosslyn, S. & Shephard, J. Spatial versus object visualizers: A new characterization of visual cognitive style. Mem. Cognit.33, 710–726. https://doi.org/10.3758/BF03195337 (2005).
Blazhenkova, O. Vividness of object and spatial imagery. Percept. Motor Skills122, 490–508. https://doi.org/10.1177/0031512516639431 (2016).
Johansson, R., Holsanova, J. & Homqvist, K. The dispersion of eye movements during visual imagery is related to individual differences in spatial imagery ability. Proc. Annu. Meet. Cognit. Sci. Soc.33 (2011).
Perkovic, S., Schoemann, M., Lagerkvist, C.-J. & Orquin, J. L. Covert attention leads to fast and accurate decision-making. J. Exp. Psychol. Appl.29, 78–94. https://doi.org/10.1037/xap0000425 (2023).
Kosslyn, S. M. Image and Brain: The Resolution of the Imagery Debate. Vol. viii. 516 (The MIT Press, 1994).
Henderson, J. M. Visual attention and eye movement control during reading and picture viewing. In Eye Movements and Visual Cognition: Scene Perception and Reading (ed. Rayner, K.) 260–283 (Springer, 1992). https://doi.org/10.1007/978-1-4612-2852-3_15.
Farnand, S., Vaidyanathan, P. & Pelz, J. B. Recurrence metrics for assessing eye movements in perceptual experiments. J. Eye Mov. Res.9. https://doi.org/10.16910/jemr.9.4.1 (2016).
Vaidyanathan, P., Pelz, J., Alm, C., Shi, P. & Haake, A. Recurrence quantification analysis reveals eye-movement behavior differences between experts and novices. In Proceedings of the Symposium on Eye Tracking Research and Applications, ETRA ’14. 303–306. https://doi.org/10.1145/2578153.2578207 (Association for Computing Machinery, 2014).
Miles, W. R. Ocular dominance in human adults. J. Gen. Psychol.3, 412–430. https://doi.org/10.1080/00221309.1930.9918218 (1930).
Hessels, R. S., Niehorster, D. C., Nyström, M., Andersson, R. & Hooge, I. T. C. Is the eye-movement field confused about fixations and saccades? A survey among 124 researchers. R. Soc. Open Sci.5, 180502. https://doi.org/10.1098/rsos.180502 (2018).
Cornelissen, F. W., Bruin, K. J. & Kooijman, A. C. The influence of artificial scotomas on eye movements during visual search. Optom. Vis. Sci.82, 27. https://doi.org/10.1097/01.OPX.0000150250.14720.C5 (2005).
Adobe. Adobe Photoshop (Computer Software, 2025).
Bylinskii, Z., Isola, P., Bainbridge, C., Torralba, A. & Oliva, A. Intrinsic and extrinsic effects on image memorability. Vis. Res.116, 165–178. https://doi.org/10.1016/j.visres.2015.03.005 (2015).
Khosla, A., Raju, A. S., Torralba, A. & Oliva, A. Understanding and predicting image memorability at a large scale. In 2015 IEEE International Conference on Computer Vision (ICCV). 2390–2398. https://doi.org/10.1109/ICCV.2015.275 (2015).
Marks, D. F. New directions for mental imagery research. J. Ment. Imag.19, 153–167 (1995).
Blazhenkova, O. & Kozhevnikov, M. The new object-spatial-verbal cognitive style model: Theory and measurement. Appl. Cognit. Psychol.23, 638–663. https://doi.org/10.1002/acp.1473 (2009).
Vandenberg, S. G. & Kuse, A. R. Mental rotations, a group test of three-dimensional spatial visualization. Percept. Motor Skills47, 599–604. https://doi.org/10.2466/pms.1978.47.2.599 (1978).
Inc., T. M. MATLAB Version: 9.13.0 (R2022b). (Natick, 2022).
Brainard, D. H. The psychophysics toolbox. Spatial Vis.10, 433–436 (1997).
Jarodzka, H., Holmqvist, K. & Nyström, M. A vector-based, multidimensional scanpath similarity measure. In Proceedings of the 2010 Symposium on Eye-Tracking Research & Applications, ETRA ’10. 211–218. https://doi.org/10.1145/1743666.1743718 (Association for Computing Machinery, 2010).
Dewhurst, R. et al. It depends on how you look at it: Scanpath comparison in multiple dimensions with MultiMatch, a vector-based approach. Behav. Res. Methods44, 1079–1100. https://doi.org/10.3758/s13428-012-0212-2 (2012).
Anderson, N. C., Anderson, F., Kingstone, A. & Bischof, W. F. A comparison of scanpath comparison methods. Behav. Res. Methods47, 1377–1392. https://doi.org/10.3758/s13428-014-0550-3 (2015).
Webber, C., Ioana, C. & Marwan, N. Recurrence Plots and Their Quantifications: Expanding Horizons: Proceedings of the 6th International Symposium on Recurrence Plots, Grenoble, France, 17–19 June 2015 (2016).
Farnand, S., Vaidyanathan, P. & Pelz, J. B. Recurrence metrics for assessing eye movements in perceptual experiments. J. Eye Mov. Res.9. https://doi.org/10.16910/jemr.9.4.1 (2016).
Wagner, A. S., Halchenko, Y. O. & Hanke, M. multimatch-gaze: The MultiMatch algorithm for gaze path comparison in Python. J. Open Source Softw.4, 1525. https://doi.org/10.21105/joss.01525 (2019).
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2023).
RStudio Team. RStudio: Integrated Development Environment for R. (RStudio, PBC., 2020).
Bürkner, P.-C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw.80, 1–28. https://doi.org/10.18637/jss.v080.i01 (2017).
Acknowledgements
We thank our participants and Lorena Di Matteo, Luca Panico and Noam Sedemund for their help during data collection. We also thank Gerda Wyssen for her support and valuable insights.
Funding
This research was funded by the Swiss National Science Foundation (SNSF), grant no. 100014_214940 (PI: FWM).
Author information
Authors and Affiliations
Contributions
E.W. and F.M. conceived the experiments, E.W. conducted the experiments, E.W. analysed the results. F.W. supervised this project and acquired funding. All authors wrote and reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Weber, E.J., Mast, F.W. Gaze patterns during visual mental imagery reflect part-based generation. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35447-z
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-35447-z


