Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Mitochondrial dysfunction and Ca2+ dysregulation in human iPSC-derived neurons carrying presenilin-1 mutation arise under stress via an MCU-1-independent mechanism
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 22 January 2026

Mitochondrial dysfunction and Ca2+ dysregulation in human iPSC-derived neurons carrying presenilin-1 mutation arise under stress via an MCU-1-independent mechanism

  • Carlos Wilson1,
  • Pablo Galeano2,
  • María Mónica Remedi1,
  • Gisela Vanina Novack2,
  • Lorenzo Campanelli2,
  • Laura Gastaldi1,
  • Esteban Miglietta3,
  • Andres Hugo Rossi3,
  • Natividad Olivar4,
  • Luis Ignacio Brusco4,
  • Eduardo Miguel Castaño2,
  • Alfredo Cáceres1 na1 &
  • …
  • Laura Morelli  ORCID: orcid.org/0000-0001-5759-18071 na1 

Scientific Reports , Article number:  (2026) Cite this article

  • 543 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cell biology
  • Neuroscience

Abstract

Impaired cellular activities in Alzheimer’s disease (AD) are linked to metabolic defects and Ca²⁺ dysregulation, but the underlying mechanisms in human neurons are unclear. We performed an integrative analysis using human iPSC-derived neurons (iNs) carrying the Presenilin-1 M146L mutation (PS1M146L). Mutant iNs displayed abnormal Ca²+ dynamics, enhanced mitochondrial respiration, and elevated reactive oxygen species (ROS). KCl-evoked depolarization was reduced, indicating a compromised plasma membrane electrochemical gradient. Under thapsigargin-induced stress, mitochondrial Ca²⁺ ([Ca²⁺]m) was significantly lower in PS1M146L iNs, while bradykinin stimulation (implying an intact IP3 pathway) showed no genotypic difference. Since both genotypes remained sensitive to an MCU-1 inhibitor, the observed [Ca²⁺]m deficits likely stem from impaired ER-mitochondria contacts rather than MCU-1 dysfunction. The present results generalise previous observations and provide evidence of the role of the MCU-1 on Ca²⁺ homeostasis in human neurons bearing this specific familial AD mutation.

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Annaert, W. G. et al. Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J. Cell. Biol. 147, 277–294 (1999).

    Google Scholar 

  2. Culvenor, J. G. et al. Alzheimer’s disease-associated presenilin 1 in neuronal cells: evidence for localization to the Endoplasmic reticulum-Golgi intermediate compartment. J. Neurosci. Res. 49, 719–731 (1997).

    Google Scholar 

  3. Walter, J. et al. The alzheimer’s disease-associated presenilins are differentially phosphorylated proteins located predominantly within the Endoplasmic reticulum. Mol. Med. 2, 673–291 (1996).

    Google Scholar 

  4. Ray, J. W. Evidence for a physical interaction between presenilin and Notch. Proc. Natl. Acad. Sci. U S A. 96, 3263–3268 (1999).

    Google Scholar 

  5. Selkoe, D. J. & Hardy, J. The amyloid hypothesis of alzheimer’s disease at 25 years. EMBO Mol. Med. 8, 595–608 (2016).

    Google Scholar 

  6. Sun, L., Zhou, R., Yang, G. & Shi, Y. Analysis of 138 pathogenic mutations in presenilin-1 on the in vitro production of Aβ42 and Aβ40 peptides by γ-secretase. Proc. Natl. Acad. Sci. U.S.A 114, E476-E485 (2017).

  7. Otto, G. P., Sharma, D. & Williams, R. S. Non-Catalytic roles of presenilin throughout evolution. J. Alzheimers Dis. 52, 1177–1187 (2016).

    Google Scholar 

  8. Cheung, K. H. et al. Mechanism of Ca2 + disruption in alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58, 871–883 (2008).

    Google Scholar 

  9. Green, K. N. et al. SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J. Cell. Biol. 181, 1107–1116 (2008).

    Google Scholar 

  10. Tu, H. et al. Presenilins form ER Ca2 + leak channels, a function disrupted by Familial alzheimer’s disease-linked mutations. Cell 26, 981–993 (2006).

    Google Scholar 

  11. Nelson, O. et al. Familial alzheimer disease-linked mutations specifically disrupt Ca2 + leak function of presenilin 1. J. Clin. Invest. 117, 1230–1239 (2007).

    Google Scholar 

  12. Cheung, K. H. et al. Gain-of-function enhancement of IP3 receptor modal gating by Familial alzheimer’s disease-linked presenilin mutants in human cells and mouse neurons. Sci. Signal. 3, ra22 (2010).

    Google Scholar 

  13. Hayashi, T., Rizzuto, R., Hajnoczky, G. & Su, T. P. MAM: more than just a housekeeper. Trends Cell. Biol. 19, 81–88 (2009).

    Google Scholar 

  14. LaFerla, F. M. Calcium dyshomeostasis and intracellular signalling in alzheimer’s disease. Nat. Rev. Neurosci. 3, 862–872 (2002).

    Google Scholar 

  15. Glancy, B. & Balaban, R. S. Role of mitochondrial Ca2 + in the regulation of cellular energetics. Biochemistry 51, 2959–2973 (2012).

    Google Scholar 

  16. Swerdlow, R. H., Burns, J. M. & Khan, S. M. The alzheimer’s disease mitochondrial cascade hypothesis. J. Alzheimers Dis. 20 (Suppl 2), S265–S279 (2010).

    Google Scholar 

  17. Gudenschwager, C., Chavez, I., Cardenas, C. & Gonzalez-Billault, C. Directly reprogrammed human neurons to understand age-related energy metabolism impairment and mitochondrial dysfunction in healthy aging and neurodegeneration. Oxid. Med. Cell. Longev. 5586052 (2021). (2021).

  18. Targa Dias Anastacio, H., Matosin, N. & Ooi, L. Familial alzheimer’s disease neurons bearing mutations in PSEN1 display increased calcium responses to AMPA as an early calcium dysregulation phenotype. Life (Basel). 14, 625 (2024).

    Google Scholar 

  19. Martin-Maestro, P. et al. Mitochondrial and metabolic dysfunction in IPSC-derived neural precursor cells of alzheimer’s disease-associated presenilin 1 mutation. Alzheimer’s Dement. 14, P724–P724 (2018).

    Google Scholar 

  20. Zatti, G. et al. Presenilin mutations linked to Familial alzheimer’s disease reduce Endoplasmic reticulum and golgi apparatus calcium levels. Cell. Calcium. 39, 539–550 (2006).

    Google Scholar 

  21. Morelli, L., Prat, M. I., Levy, E., Mangone, C. A. & Castaño, E. M. Presenilin 1 Met146Leu variant due to an A → T transversion in an early-onset Familial alzheimer’s disease pedigree from Argentina. Clin. Genet. 53, 469–473 (1998).

    Google Scholar 

  22. Johnson, J. W. & Ascher, P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325, 529–531 (1987).

    Google Scholar 

  23. Kleckner, N. W. & Dingledine, R. Requirement for Glycine in activation of NMDA-receptors expressed in xenopus oocytes. Science 241, 835–837 (1998).

    Google Scholar 

  24. Guo, H. et al. A NMDA-receptor calcium influx assay sensitive to stimulation by glutamate and glycine/D-serine. Sci. Rep. 7, 11608 (2017).

    Google Scholar 

  25. Dotti, C. G., Sullivan, C. A. & Banker, G. A. The establishment of Polarity by hippocampal neurons in culture. J. Neurosci. 8, 1454–1468 (1988).

    Google Scholar 

  26. Wang, Y., Greig, N. H., Yu, Q. S. & Mattson, M. P. Presenilin-1 mutation impairs cholinergic modulation of synaptic plasticity and suppresses NMDA currents in hippocampus slices. Neurobiol. Aging. 30, 1061–1068 (2009).

    Google Scholar 

  27. Márta, K., Hasan, P., Rodríguez-Prados, M., Paillard, M. & Hajnóczky, G. Pharmacological Inhibition of the mitochondrial Ca2 + uniporter: relevance for pathophysiology and human therapy. J. Mol. Cell. Cardiol. 151, 135–144 (2021).

    Google Scholar 

  28. Filadi, R. et al. Presenilin 2 modulates Endoplasmic reticulum-mitochondria coupling by tuning the antagonistic effect of Mitofusin 2. Cell. Rep. 15, 2226–2238 (2016).

    Google Scholar 

  29. Jaconi, M. et al. Inositol 1,4,5-trisphosphate directs Ca2 + flow between mitochondria and the endoplasmic/sarcoplasmic reticulum: a role in regulating cardiac autonomic Ca2 + spiking. Mol. Biol. Cell. 11, 1845–1858 (2000).

    Google Scholar 

  30. Zampese, E. et al. Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2 + cross-talk. Proc. Natl. Acad. Sci. U.S.A. 108, 2777–2782 (2011).

  31. Attwell, D. & Laughlin, S. B. An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow. Metab. 21, 1133–1145 (2001).

    Google Scholar 

  32. Bedard, K. & Krause, K. H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 87, 245–313 (2007).

    Google Scholar 

  33. Brand, M. D. & Nicholls, D. G. Assessing mitochondrial dysfunction in cells. Biochem. J. 435, 297–312 (2011).

    Google Scholar 

  34. Oberheim, N. A. et al. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29, 3276–3287 (2009).

    Google Scholar 

  35. Frederiksen, H. R., Holst, B., Mau-Holzmann, U. A., Freude, K. & Schmid, B. Generation of two isogenic iPSC lines with either a heterozygous or a homozygous E280A mutation in the PSEN1 gene. Stem Cell. Res. 35, 101403 (2019).

    Google Scholar 

  36. Poon, A. et al. Generation of a gene-corrected isogenic control HiPSC line derived from a Familial alzheimer’s disease patient carrying a L150P mutation in presenilin 1. Stem Cell. Res. 17, 466–469 (2016).

    Google Scholar 

  37. Li, L. et al. iPSC modeling of Presenilin1 mutation in alzheimer’s disease with cerebellar ataxia. Exp. Neurobiol. 27, 350–364 (2018).

    Google Scholar 

  38. Hernández, D. et al. Generation of a gene-corrected human isogenic iPSC line from an alzheimer’s disease iPSC line carrying the PSEN1 H163R mutation. Stem Cell. Res. 79, 103495 (2024).

    Google Scholar 

  39. Li, T. et al. Generation of induced pluripotent stem cells (iPSCs) from an alzheimer’s disease patient carrying a M146I mutation in PSEN1. Stem Cell. Res. 16, 334–337 (2016).

    Google Scholar 

  40. Díaz-Guerra, E. et al. Generation of an integration-free iPSC line, ICCSICi006-A, derived from a male alzheimer’s disease patient carrying the PSEN1-G206D mutation. Stem Cell. Res. 40, 101574 (2019).

    Google Scholar 

  41. Yang, J. et al. Early pathogenic event of alzheimer’s disease documented in iPSCs from patients with PSEN1 mutations. Oncotarget 8, 7900–7913 (2017).

    Google Scholar 

  42. Scheuner, D. et al. Secreted amyloid beta-protein similar to that in the senile plaques of alzheimer’s disease is increased in vivo by the presenilin 1 and 2 and APP mutations linked to Familial alzheimer’s disease. Nat. Med. 2, 864–870 (1996).

    Google Scholar 

  43. Angelova, P. R. & Abramov, A. Y. Interplay of mitochondrial calcium signalling and reactive oxygen species production in the brain. Biochem. Soc. Trans. 52, 1939–1946 (2024).

    Google Scholar 

  44. Doser, R. L. & Hoerndli, F. J. Regulation of neuronal excitability by reactive oxygen species and calcium signaling: insights into brain aging. Curr. Res. Neurobiol. 2, 100012 (2021).

    Google Scholar 

  45. Bélanger, M., Allaman, I. & Magistretti, P. J. Brain energy metabolism: focus on astrocyte-neuron metabolic Cooperation. Cell. Metab. 14, 724–738 (2011).

    Google Scholar 

  46. Wilson, C. & González-Billault, C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front. Cell. Neurosci. 9, 381 (2015).

    Google Scholar 

  47. Wilson, C. et al. A feed-forward mechanism involving the NOX complex and RyR-mediated Ca2 + release during axonal specification. J. Neurosci. 36, 11107–11119 (2016).

    Google Scholar 

  48. Bórquez, D. A. et al. Dissecting the role of redox signaling in neuronal development. J. Neurochem. 137, 506–517 (2016).

    Google Scholar 

  49. Muñoz-Palma, E., Wilson, C., Hidalgo, C. & González-Billault, C. Glutamate and early functional NMDA receptors promote axonal elongation modulating both actin cytoskeleton dynamics and H2O2 production dependent on Rac1 activity. Preprint (2025).

  50. Wilson, C., Muñoz-Palma, E. & González-Billault, C. From birth to death: a role for reactive oxygen species in neuronal development. Semin Cell. Dev. Biol. 80, 43–49 (2018).

    Google Scholar 

  51. Area-Gomez, E. et al. Upregulated function of mitochondria-associated ER membranes in alzheimer disease. EMBO J. 31, 4106–4123 (2012).

    Google Scholar 

  52. Martino Adami, P. V. et al. Perturbed mitochondria-ER contacts in live neurons that model the amyloid pathology of alzheimer’s disease. J. Cell. Sci. 132, jcs229906 (2019).

    Google Scholar 

  53. Bell, S. M. et al. Ursodeoxycholic acid improves mitochondrial function and redistributes Drp1 in fibroblasts from patients with either sporadic or Familial alzheimer’s disease. J. Mol. Biol. 430, 3942–3953 (2018).

    Google Scholar 

  54. Han, J. et al. Alzheimer’s disease-causing presenilin-1 mutations have deleterious effects on mitochondrial function. Theranostics 11, 8855–8873 (2021).

    Google Scholar 

  55. Naia, L. et al. Mitochondrial hypermetabolism precedes impaired autophagy and synaptic disorganization in app knock-in alzheimer mouse models. Mol. Psychiatry. 28, 3966–3981 (2023).

    Google Scholar 

  56. Ma, D. et al. Inhibition of stress induced premature senescence in presenilin-1 mutated cells with water soluble coenzyme Q10. Mitochondrion 17, 106–115 (2014).

    Google Scholar 

  57. Youle, R. J. & van der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science 337, 1062–1065 (2012).

    Google Scholar 

  58. Martín-Maestro, P. et al. Mitophagy failure in fibroblasts and iPSC-derived neurons of alzheimer’s disease-associated presenilin 1 mutation. Front. Mol. Neurosci. 10, 291 (2017).

    Google Scholar 

  59. Tondera, D. et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589–1600 (2009).

    Google Scholar 

  60. Rambold, A. S., Kostelecky, B., Elia, N. & Lippincott-Schwartz, J. Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U S A. 108, 10190–10195 (2011).

    Google Scholar 

  61. Yoon, Y. S. et al. Formation of elongated giant mitochondria in DFO-induced cellular senescence: involvement of enhanced fusion process through modulation of Fis1. J. Cell. Physiol. 209, 468–480 (2006).

    Google Scholar 

  62. Westermann, B. Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell. Biol. 11, 872–884 (2010).

    Google Scholar 

  63. Jurk, D. et al. Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell. 11, 996–1004 (2012).

    Google Scholar 

  64. Piechota, M. et al. Is senescence-associated β-galactosidase a marker of neuronal senescence? Oncotarget 7, 81099–81109 (2016).

    Google Scholar 

  65. Fedorovich, S. V., Waseem, T. V. & Puchkova, L. V. Biogenetic and morphofunctional heterogeneity of mitochondria: the case of synaptic mitochondria. Rev. Neurosci. 28, 363–373 (2017).

    Google Scholar 

  66. Graham, L. C. et al. Proteomic profiling of neuronal mitochondria reveals modulators of synaptic architecture. Mol. Neurodegener. 12, 77 (2017).

    Google Scholar 

  67. Brown, M. R., Sullivan, P. G. & Geddes, J. W. Synaptic mitochondria are more susceptible to Ca2 + overload than nonsynaptic mitochondria. J. Biol. Chem. 281, 11658–11668 (2006).

    Google Scholar 

  68. Gökerküçük, E. B., Tramier, M. & Bertolin, G. Imaging mitochondrial functions: from fluorescent dyes to Genetically-Encoded sensors. Genes (Basel). 11, 125 (2020).

    Google Scholar 

  69. Coatesworth, W. & Bolsover, S. Spatially organised mitochondrial calcium uptake through a novel pathway in chick neurones. Cell. Calcium. 39, 217–225 (2006).

    Google Scholar 

  70. Zhang, X. Q. & Zhang, S. C. Differentiation of neural precursors and dopaminergic neurons from human embryonic stem cells. Methods Mol. Biol. 584, 355–366 (2010).

    Google Scholar 

  71. Mir, F. R., Wilson, C., Zapata, C., Aguayo, L. E., Cambiasso, M. J. & L. G. & Gonadal hormone-independent sex differences in GABAA receptor activation in rat embryonic hypothalamic neurons. Br. J. Pharmacol. 177, 3075–3090 (2020).

    Google Scholar 

  72. Fernandez-Sanz, C., De la Fuente, S. & Sheu, S. S. Mitochondrial Ca2 + concentrations in live cells: quantification methods and discrepancies. FEBS Lett. 593, 1528–1541 (2019).

    Google Scholar 

  73. Marmolejo-Garza, A. et al. Negative modulation of mitochondrial calcium uniporter complex protects neurons against ferroptosis. Cell. Death Dis. 14, 772 (2023).

    Google Scholar 

  74. Martínez, J. et al. Mitofusins modulate the increase in mitochondrial length, bioenergetics and secretory phenotype in therapy-induced senescent melanoma cells. Biochem. J. 476, 2463–2486 (2019).

    Google Scholar 

  75. Galeano, P. et al. The effect of fat intake with increased omega-6-to-omega-3 polyunsaturated fatty acid ratio in animal models of early and late alzheimer’s disease-like pathogenesis. Int. J. Mol. Sci. 24, 17009 (2023).

    Google Scholar 

  76. Sheng, B. et al. Impaired mitochondrial biogenesis contributes to mitochondrial dysfunction in alzheimer’s disease. J. Neurochem. 120, 419–429 (2012).

    Google Scholar 

  77. Esparza-Moltó, P. B. et al. Tissue-specific expression and post-transcriptional regulation of the ATPase inhibitory factor 1 (IF1) in human and mouse tissues. FASEB J. 33, 1836–1851 (2019).

    Google Scholar 

Download references

Funding

This study received funding from the Agencia Nacional de Promoción Científica y Tecnológica (PIBT/09-2013 to L.M. and A.C.; PICT-2015-0285 and PICT-2016-4647 to L.M.; PICT-2015-0285 and PICT-2016-4647 to C.W.), from Alzheimer Argentina to L.I.B. and from Fundacion Ciencias Biomedicas Cordoba (FUCIBICO) to A.C.

Author information

Author notes
  1. Alfredo Cáceres and Laura Morelli contributed equally to this work.

Authors and Affiliations

  1. Centro de Investigación en Medicina Traslacional “Severo R Amuchástegui” (CIMETSA), Instituto Universitario Ciencias Biomédicas Córdoba (IUCBC), Naciones Unidas 420, Parque, Córdoba, X5000, Argentina

    Carlos Wilson, María Mónica Remedi, Laura Gastaldi, Alfredo Cáceres & Laura Morelli

  2. Laboratory of Brain Aging and Neurodegeneration, Fundación Instituto Leloir, IIBBA-CONICET, Av. Patricias Argentinas 435, CABA, Buenos Aires, C1405BWE, Argentina

    Pablo Galeano, Gisela Vanina Novack, Lorenzo Campanelli & Eduardo Miguel Castaño

  3. Microscopy and BioImaging Facility, Fundación Instituto Leloir-IIBBA- CONICET, Av. Patricias Argentinas 435, CABA, Buenos Aires, C1405BWE, Argentina

    Esteban Miglietta & Andres Hugo Rossi

  4. Center of Neuropsychiatry and Neurology of Behavior, School of Medicine, University of Buenos Aires, Paraguay, 2155, CABA, Buenos Aires, C1121 ABG, Argentina

    Natividad Olivar & Luis Ignacio Brusco

Authors
  1. Carlos Wilson
    View author publications

    Search author on:PubMed Google Scholar

  2. Pablo Galeano
    View author publications

    Search author on:PubMed Google Scholar

  3. María Mónica Remedi
    View author publications

    Search author on:PubMed Google Scholar

  4. Gisela Vanina Novack
    View author publications

    Search author on:PubMed Google Scholar

  5. Lorenzo Campanelli
    View author publications

    Search author on:PubMed Google Scholar

  6. Laura Gastaldi
    View author publications

    Search author on:PubMed Google Scholar

  7. Esteban Miglietta
    View author publications

    Search author on:PubMed Google Scholar

  8. Andres Hugo Rossi
    View author publications

    Search author on:PubMed Google Scholar

  9. Natividad Olivar
    View author publications

    Search author on:PubMed Google Scholar

  10. Luis Ignacio Brusco
    View author publications

    Search author on:PubMed Google Scholar

  11. Eduardo Miguel Castaño
    View author publications

    Search author on:PubMed Google Scholar

  12. Alfredo Cáceres
    View author publications

    Search author on:PubMed Google Scholar

  13. Laura Morelli
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Author contributions statement: C.W, L.M.; Methodology: C.W., P.G., M.M.R., L.G, L.C., G.V.N. N.O; E.M; A.H.R. Statistical Analysis: C.W., P.G., M.M.R., E.M.; Resources: C.W, L.I.B, E.M.C., A.C, L.M.; Writing - original draft: C.W., P.G., M.M.R., G.V.N., L.M; Writing - review & editing: C.W., P.G., M.M.R., G.V.N., L.C, L.G, N.O., E.M., A.H.R., L.I.B., E.M.C. S.C., L.M.; Supervision: A.C., L.M.; Project administration: C.W., A.C., L.M.; Funding acquisition: C.W, L.I.B., A.C, L.M. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Laura Morelli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilson, C., Galeano, P., Remedi, M.M. et al. Mitochondrial dysfunction and Ca2+ dysregulation in human iPSC-derived neurons carrying presenilin-1 mutation arise under stress via an MCU-1-independent mechanism. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35597-0

Download citation

  • Received: 30 October 2025

  • Accepted: 07 January 2026

  • Published: 22 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35597-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Alzheimer
  • Calcium homeostasis
  • iPSC
  • Cultured neurons
  • Mitochondrial dysfunction
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing