Table 8 Comparison of specificity, AUC-ROC, and sensitivity.

From: Exploring oceanic depths: unveiling hidden treasures with IoT and ensembled deep hybrid learning model

Model

Specificity (%)

AUC-ROC (%)

Sensitivity (%)

CNN

88.52

88.23

87.77

ResNet

90.87

90.87

89.92

DenseNet

91.38

91.56

90.56

VGG

90.79

90.21

89.84

AutoEncoder-LSTM

91.11

91.11

90.98

Hybrid ResNet-LightGBM

92.48

92.18

91.87

Inception-XGBoost

92.05

91.93

91.41

EfficientNet-gradient boosting

92.64

92.66

91.73

Capsule network

91.86

92.05

91.32

Proposed EDHL (Inception-GB)

95.98

98.75

97.98