Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Groundwater potential zones demarcation in the hard rock province of South India: insights from remote sensing, GIS and AHP techniques
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 25 January 2026

Groundwater potential zones demarcation in the hard rock province of South India: insights from remote sensing, GIS and AHP techniques

  • K. Pragadeeshwaran1,
  • B. Gurugnanam  ORCID: orcid.org/0000-0002-8775-71231,
  • M. Bagyaraj1,
  • S. Bairavi1,
  • D. Karunanidhi2 &
  • …
  • Berihu Abadi Berhe  ORCID: orcid.org/0000-0001-5841-96893 

Scientific Reports , Article number:  (2026) Cite this article

  • 243 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Environmental sciences
  • Hydrology
  • Natural hazards

Abstract

The research aims to assess the groundwater potential zones (GWPZs) in the Chinnalapatti firka hard rock region to aid in sustainable groundwater management. The GWPZs were determined with the aid of Analytic Hierarchy Process (AHP) along with remote sensing (RS) and geographical information system (GIS) technologies. These Remote sensing and GIS greatly enhance groundwater potential mapping and assessment, as well as monitoring and conservation efforts. To evaluate groundwater potential (GWP) in the area of interest, remote sensing (RS) and conventional data sources were used to construct eight thematic maps. These maps included lineament density, drainage density, rainfall, geomorphology, geology, land use/land cover, soil and slope. Using AHP, each thematic layer, along with its subclasses, was assigned weights based on their influence on groundwater occurrence. Following this, the GWPZ map of Chinnalapatti firka was prepared by integrating the thematic layers with weighted overlay analysis in ArcGIS 10.7. The resulting map classified the study area into five groundwater potential groups: very good (19.97%), good (31.78%), moderate (30.61%), poor (17.63%), and very poor (0.01%). Utilizing the ArcSDM tool within ArcGIS software, the receiver operating characteristic (ROC) curve analysis showed that the area under the curve AUC = 0.80, which means that the GWPZ has good model performance. Planning and implementing artificial groundwater recharge projects, especially in semi-arid and hard rock terrains, is greatly aided by the spatial database created in this study. To improve groundwater sustainability, appropriate locations for recharge activities must be found. These results provide important information for sustainable groundwater management and long-term planning of water resources in the Chinnalapatti Firka region.

Similar content being viewed by others

AHP and Geospatial technology-based assessment of groundwater potential zones in Natham taluk, Tamil nadu, India

Article Open access 01 August 2025

Mapping the groundwater potential zones in mountainous areas of Southern China using GIS, AHP, and fuzzy AHP

Article Open access 17 May 2025

Deciphering of groundwater potential zones in hard rock terrain using GIS technology with AHP statistical methods: A case study of Nilgiri, Tamil Nadu, India

Article Open access 21 July 2025

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Murugesan, B., Balasumbramaniyan, G., Swaminathan, B. & Karuppannan, S. Deciphering of groundwater potential zones in hard rock terrain using GIS technology with AHP statistical methods: A case study of Nilgiri, Tamil Nadu, India. Sci. Rep. 15(1), 1–16. https://doi.org/10.1038/S41598-025-10948-5 (2025).

    Google Scholar 

  2. Awasthi, A. & Rishi, M. S. Assessing groundwater potential for sustainable development in the transboundary aquifers of River Ravi, India: An integrated geospatial and AHP approach. Environ. Earth Sci. 84(14), 1–24. https://doi.org/10.1007/S12665-025-12415-W/METRICS (2025).

    Google Scholar 

  3. Kumar Gautam, V., Pande, C. B., Kothari, M., Kumar Singh, P. & Agrawal, A. Exploration of groundwater potential zones mapping for hard rock region in the Jakham river basin using geospatial techniques and aquifer parameters. Adv. Space Res. 71(6), 2892–2908. https://doi.org/10.1016/J.ASR.2022.11.022 (2023).

    Google Scholar 

  4. Tella, T. A., Festus, B., Olaoluwa, T. D. & Oladapo, A. S. Water and wastewater treatment in developed and developing countries: Present experience and future plans. Smart Nanomat. Environ. Appl. https://doi.org/10.1016/B978-0-443-21794-4.00030-2 (2025).

    Google Scholar 

  5. Central Ground Water Board, 2023 - Google Search [Online] (accessed: Nov. 12, 2025); https://www.google.com/search?q=Central+Ground+Water+Board%2C+2023&oq=Central+Ground+Water+Board%2C+2023&gs_lcrp=EgZjaHJvbWUyBggAEEUYOTIICAEQABgWGB4yCAgCEAAYFhgeMgoIAxAAGIAEGKIEMgoIBBAAGIAEGKIEMgcIBRAAGO8FMgcIBhAAGO8FMgcIBxAAGO8F0gEJMTk0MGowajE1qAIIsAIB8QVWRM0uj4rNNQ&sourceid=chrome&ie=UTF-8&zx=1762941268586&no_sw_cr=1

  6. Magesh, N. S., Chandrasekar, N. & Soundranayagam, J. P. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 3(2), 189–196. https://doi.org/10.1016/J.GSF.2011.10.007 (2012).

    Google Scholar 

  7. Das, K. et al. Integrated assessment of fluoride occurrence and groundwater usability: A critical concern for drinking water sustainability and irrigation in semi-arid region of West Bengal, India. Discov. Sustain. 6(1), 1–24. https://doi.org/10.1007/S43621-025-01498-X/METRICS (2025).

    Google Scholar 

  8. Sati, V. P. Water resource potential in the Indian Central Himalaya: A study on its conservation through traditional practices. Rural Reg. Dev. 3(3), 10011. https://doi.org/10.70322/RRD.2025.10011 (2025).

    Google Scholar 

  9. Ghorbani Nejad, S., Falah, F., Daneshfar, M., Haghizadeh, A. & Rahmati, O. Delineation of groundwater potential zones using remote sensing and GIS-based data-driven models. Geocarto Int. 32(2), 167–187. https://doi.org/10.1080/10106049.2015.1132481 (2017).

    Google Scholar 

  10. Arulbalaji, P., Padmalal, D. & Sreelash, K. GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Sci. Rep. 9(1), 1–17. https://doi.org/10.1038/S41598-019-38567-X (2019).

    Google Scholar 

  11. Chaudhary, B. S. & Kumar, S. Identification of groundwater potential zones using remote sensing and GIS of K-J Watershed, India. J. Geol. Soc. India 91(6), 717–721. https://doi.org/10.1007/S12594-018-0929-3 (2018).

    Google Scholar 

  12. Akpoti, K. et al. Integrating GIS and remote sensing for land use/land cover mapping and groundwater potential assessment for climate-smart cocoa irrigation in Ghana. Sci. Rep. 13(1), 1–21. https://doi.org/10.1038/S41598-023-43286-5 (2023).

    Google Scholar 

  13. Sayed Mostafa, A. E. et al. Groundwater potential mapping in semi-arid areas using integrated remote sensing, GIS, and geostatistics techniques. Water 17(13), 1909. https://doi.org/10.3390/W17131909 (2025).

    Google Scholar 

  14. Ayadi, Y., Gentilucci, M., Ncibi, K., Hadji, R. & Hamed, Y. Assessment of a groundwater potential zone using geospatial artificial intelligence (Geo-AI), remote sensing (RS), and GIS tools in Majerda Transboundary Basin (North Africa). Water (Switzerland) https://doi.org/10.3390/W17030331 (2025).

    Google Scholar 

  15. Mageshkumar, P., Subbaiyan, A., Lakshmanan, E. & Thirumoorthy, P. Application of geospatial techniques in delineating groundwater potential zones: A case study from South India. Arab. J. Geosci. 12(5), 1–15. https://doi.org/10.1007/S12517-019-4289-0/FIGURES/12 (2019).

    Google Scholar 

  16. Dar, T., Rai, N. & Bhat, A. Delineation of potential groundwater recharge zones using analytical hierarchy process (AHP). Geol. Ecol. Landsc. 5(4), 292–307. https://doi.org/10.1080/24749508.2020.1726562 (2021).

    Google Scholar 

  17. Thakur, J. K., Thakur, R. K., Ramanathan, A. L., Kumar, M. & Singh, S. K. Arsenic contamination of groundwater in Nepal—An overview. Water 3(1), 1–20. https://doi.org/10.3390/W3010001 (2010).

    Google Scholar 

  18. Agarwal, E. et al. Delineation of groundwater potential zone: An AHP/ANP approach. JESS 122(3), 887–898. https://doi.org/10.1007/S12040-013-0309-8 (2013).

    Google Scholar 

  19. Kassa, S. B. et al. Groundwater potential assessment using integrated geospatial and analytic hierarchy process techniques (AHP) in chemoga watershed, Upper Blue Nile Basin, Ethiopia. Air, Soil Water Res. https://doi.org/10.1177/11786221241312806 (2025).

    Google Scholar 

  20. Suryawanshi, S. L. et al. Spatial and decision-making approaches for identifying groundwater potential zones: A review. Environ. Earth Sci. 82(20), 1–11. https://doi.org/10.1007/S12665-023-11149-X/FIGURES/2 (2023).

    Google Scholar 

  21. Ahammed, I., Jayapal, G., Prasad, T. K. & Suresh, S. Geographical Information system and multi-influencing factor techniques for the assessment of groundwater potential zones of tropical watersheds: A case study. Acta Geogr. Debrecina Landsc. Environ. Series 19(1), 15–28 (2025).

    Google Scholar 

  22. Bagyaraj, M., Ramkumar, T., Venkatramanan, S. & Gurugnanam, B. Application of remote sensing and GIS analysis for identifying groundwater potential zone in parts of Kodaikanal Taluk, South India. Front. Earth Sci. 7(1), 65–75. https://doi.org/10.1007/s11707-012-0347-6 (2012).

    Google Scholar 

  23. Selvarani, A. G., Maheswaran, G. & Elangovan, K. Evaluation of groundwater potential zones using GIS and remote sensing in Noyyal Basin, Tamil Nadu India. Int. J. Environ. Technol. Manage. 17(5), 377–392. https://doi.org/10.1504/IJETM.2014.064577 (2014).

    Google Scholar 

  24. Kawo, N. S. & Karuppannan, S. Groundwater quality assessment using water quality index and GIS technique in Modjo River Basin, central Ethiopia. J. Afr. Earth Sci. 147, 300–311. https://doi.org/10.1016/j.jafrearsci.2018.06.034 (2018).

    Google Scholar 

  25. Karuppannan, S. & Serre Kawo, N. Groundwater quality assessment using geospatial techniques and WQI in North East of Adama Town, Oromia Region, Ethiopia. Hydrospatial Anal. 3(1), 22–36 (2020).

    Google Scholar 

  26. Rehman, A. et al. Groundwater potential zone mapping using GIS and remote sensing based models for sustainable groundwater management. Geocarto Int. https://doi.org/10.1080/10106049.2024.2306275 (2024).

    Google Scholar 

  27. Kanji, S. & Das, S. Assessing groundwater potentialities and replenishment feasibility using machine learning and MCDM models considering hydro-geological aspects and water quality constituents. Environ. Earth Sci. https://doi.org/10.1007/s12665-024-11996-2 (2025).

    Google Scholar 

  28. Patel, D. K. et al. Groundwater potential zone mapping using AHP and geospatial techniques in the upper Narmada basin, central India. Discov. Sustain. https://doi.org/10.1007/s43621-024-00560-4 (2024).

    Google Scholar 

  29. Diriba, D., Karuppannan, S., Takele, T. & Husein, M. Delineation of groundwater potential zonation using geoinformatics and AHP techniques with remote sensing data. Heliyon https://doi.org/10.1016/j.heliyon.2024.e25532 (2024).

    Google Scholar 

  30. Saaty, T. L. & Vargas, L. G. Hierarchical analysis of behavior in competition: Prediction in chess. Behav. Sci. 25(3), 180–191. https://doi.org/10.1002/BS.3830250303 (1980).

    Google Scholar 

  31. Ghosh, M. & Sahu, A. S. Delineation of groundwater potential zones using AHP and GIS techniques: A case study in Barakar river basin, India. Arab. J. Geosci. 16(3), 1–20. https://doi.org/10.1007/S12517-023-11253-Z (2023).

    Google Scholar 

  32. Roy, S. K. et al. Empowered machine learning algorithm to identify sustainable groundwater potential zone map in Jashore District, Bangladesh. Groundw. Sustain. Dev. 25, 101168. https://doi.org/10.1016/J.GSD.2024.101168 (2024).

    Google Scholar 

  33. Sakthi Priya, R. et al. An application of remote sensing and GIS used in groundwater potential zones for sustainable urban development in coastal areas between Chettikulam and Kolachal, southern India. Appl. Geomat. https://doi.org/10.1007/s12518-024-00604-4 (2025).

    Google Scholar 

  34. “IMD - Google Search.” [Online]. (accessed 12 Nov 2025); https://www.google.com/search?q=IMD&oq=IMD&gs_lcrp=EgZjaHJvbWUyDwgAEEUYORixAxjJAxiABDIGCAEQIxgnMg0IAhAAGIMBGLEDGIAEMg0IAxAAGJIDGIAEGIoFMgoIBBAAGLEDGIAEMgoIBRAAGLEDGIAEMgoIBhAAGLEDGIAEMgoIBxAAGLEDGIAEMgoICBAAGLEDGIAEMgcICRAAGI8C0gEJMjI4NmowajE1qAIIsAIB8QVSmK1gQ5IIZfEFUpitYEOSCGU&sourceid=chrome&ie=UTF-8

  35. Fatema, K., Joy, M., Amin, F. & Sarkar, S. Groundwater potential mapping in Jashore, Bangladesh. Heliyon 9(3), e13966 (2023).

    Google Scholar 

  36. “Home | CGWB.” [Online] (accessed 02 Oct 2025); https://www.cgwb.gov.in/

  37. Rahaman, A. et al. Delineation of groundwater potential zones through AHP: A case study from Tamil Nadu, India (Springer, 2023).

    Google Scholar 

  38. Bera, A., Mukhopadhyay, B. P. & Barua, S. Delineation of groundwater potential zones in Karha river basin, Maharashtra, India, using AHP and geospatial techniques. Arab. J. Geosci. https://doi.org/10.1007/S12517-020-05702-2 (2020).

    Google Scholar 

  39. Saaty, T. L. How to make a decision: The analytic hierarchy process. Eur. J. Oper. Res. 48(1), 9–26. https://doi.org/10.1016/0377-2217(90)90057-I (1990).

    Google Scholar 

  40. Das, D. M. et al. Identification of potential groundwater zones in rice-fallow areas within the Mahanadi river basin, India, using GIS and the analytical hierarchy process. EES 81(15), 395. https://doi.org/10.1007/S12665-022-10517-3 (2022).

    Google Scholar 

  41. Machiwal, D., Jha, M. K. & Mal, B. C. Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour. Manage 25(5), 1359–1386. https://doi.org/10.1007/S11269-010-9749-Y/METRICS (2011).

    Google Scholar 

  42. Lee, S., Hyun, Y. & Lee, M. J. Groundwater potential mapping using data mining models of big data analysis in Goyang-si, South Korea. Sustainability (Switzerland) https://doi.org/10.3390/su11061678 (2019).

    Google Scholar 

  43. Rajasekhar, M., Upendra, B. & Raju, G. S. Identification of groundwater potential zones in southern India using geospatial and decision-making approaches. Appl. Water Sci. https://doi.org/10.1007/S13201-022-01603-9 (2022).

    Google Scholar 

  44. Govindaraj, V., Thirumalasamy, S., Sankar, J. I. & Gopi, S. Groundwater potential mapping and natural remediation through artificial recharge structures in Vellore District, Tamil Nadu, India using geospatial techniques. Desalination Water Treat. 254, 229–237. https://doi.org/10.5004/dwt.2022.28351 (2022).

    Google Scholar 

  45. Khan, Z. A. & Jhamnani, B. Identification of groundwater potential zones of Idukki district using remote sensing and GIS-based machine-learning approach. Water Supply 23(6), 2426–2446. https://doi.org/10.2166/ws.2023.134 (2023).

    Google Scholar 

  46. Murmu, P., Kumar, M., Lal, D., Sonker, I. & Singh, S. K. Groundwater for sustainable development delineation of groundwater potential zones using geospatial techniques and analytical hierarchy process in Dumka district, Jharkhand. India Groundw. Sustain. Dev. 9, 100239. https://doi.org/10.1016/j.gsd.2019.100239 (2019).

    Google Scholar 

  47. Kom, K. P., Gurugnanam, B. & Sunitha, V. Delineation of groundwater potential zones using GIS and AHP techniques in Coimbatore district, South India. Int. J. Energy Water Resour. 8(1), 85–109. https://doi.org/10.1007/S42108-022-00188-Y (2024).

    Google Scholar 

  48. Machiwal, D. & Singh, P. K. Comparing GIS-based multi-criteria decision-making and Boolean logic modelling approaches for delineating groundwater recharge zones. Arab. J. Geosci. 8(12), 10675–10691. https://doi.org/10.1007/S12517-015-2002-5/FIGURES/10 (2015).

    Google Scholar 

  49. Suryawanshi, S. L. et al. Assessment of groundwater potential zones for hard rock area of sabi river basin using an integrated approach of remote sensing, GIS and AHP techniques. Phys. Chem. Earth https://doi.org/10.1016/j.pce.2024.103820 (2025).

    Google Scholar 

  50. Malczewski, J. GIS and multicriteria decision analysis. [Online] (accessed 05 June 2025, 1999); https://books.google.co.in/books?hl=en&lr=&id=ZqUsEAAAQBAJ&oi=fnd&pg=PA393&dq=Malczewski,+J.+(1999).+GIS+and+multicriteria+decision+analysis.+New+York:+Wiley.&ots=6I085klA9-&sig=kkjuzK6knpCe2BTZ75zSn6gtP6c

  51. Jasmin, I. & Mallikarjuna, P. Delineation of groundwater potential zones in Araniar River basin, Tamil Nadu, India: An integrated remote sensing and geographical information system approach. Environ. Earth Sci. 73(7), 3833–3847. https://doi.org/10.1007/S12665-014-3666-Y (2015).

    Google Scholar 

  52. Ahmed, Z., Ansari, M. T., Zahir, M., Shakir, U. & Subhan, M. Hydrogeophysical investigation for groundwater potential through electrical resistivity survey in Islamabad, Pakistan. J. Geogr. Soc. Sci. 2(2), 147–163 (2020).

    Google Scholar 

  53. Yeh, H. F., Cheng, Y. S., Lin, H. I. & Lee, C. H. Mapping groundwater recharge potential zone using a GIS approach in Hualian River, Taiwan. Sustain. Environ. Res. 26(1), 33–43. https://doi.org/10.1016/J.SERJ.2015.09.005 (2016).

    Google Scholar 

  54. Kumar Singh, S. et al. Integrated assessment of groundwater influenced by a confluence river system: Concurrence with remote sensing and geochemical modelling. Water Resour. Manag. 27(12), 4291–4313. https://doi.org/10.1007/S11269-013-0408-Y (2013).

    Google Scholar 

  55. Acharya, T. & NAG, S. Study of groundwater prospects of the crystalline rocks in Purulia District, West Bengal, India using remote sensing data. Earth Resour. 1(2), 54–59 (2013).

    Google Scholar 

  56. Bhattacharya, S., Das, S., Das, S., Kalashetty, M. & Warghat, S. R. An integrated approach for mapping groundwater potential applying geospatial and MIF techniques in the semiarid region. Environ. Dev. Sustain. 23(1), 495–510. https://doi.org/10.1007/+S10668-020-00593-5 (2021).

    Google Scholar 

  57. Singh, P. K., Dahiphale, P., Yadav, K. K., & Singh, M. Delineation of groundwater potential zones in Jaisamand basin of Udaipur district. In: Groundwater: Select Proceedings of ICWEES-2016 3–20 (Springer Singapore, 2018).

  58. O’Leary, D. W., Friedman, J. D. & Pohn, H. A. Lineament, linear, lineation: Some proposed new standards for old terms. Geol. Soc. Am. Bull. 87(10), 1463–1469 (1976).

    Google Scholar 

  59. Arulbalaji, P., Padmalal, D. & Sreelash, K. GIS and AHP techniques based delineation of groundwater potential zones: A case study from Southern Western Ghats, India. Sci. Rep. https://doi.org/10.1038/s41598-019-38567-x (2019).

    Google Scholar 

  60. Silwal, C. B. et al. Groundwater potential zonation in the Siwalik of the Kankai River Basin, Eastern Nepal. Water Supply 23(6), 2332–2348. https://doi.org/10.2166/WS.2023.137 (2023).

    Google Scholar 

  61. Sayl, K. N., Sulaiman, S. O., Kamel, A. H. & Al-Ansari, N. Towards the generation of a spatial hydrological soil group map based on the radial basis network model and spectral reflectance band recognition. Int. J. Des. Nat. Ecodyn. 17(5), 761–766 (2022).

    Google Scholar 

  62. Waikar, M. L. & Nilawar, A. P. Identification of groundwater potential zone using remote sensing and GIS technique. Int. J. Innov. Res. Sci. Eng. Technol. 3297(5), 2319–8753 (2014).

    Google Scholar 

  63. Yacob, A., Hussien, A., Tesema, F. W. & Berhe, B. A. Delineation of groundwater potential zones using analytical hierarchy process (AHP) and GIS in Weserbi Sub-Catchment, Oromia, Ethiopia. Water Practice Technol. 20(4), 983. https://doi.org/10.2166/wpt.2025.050 (2025).

    Google Scholar 

  64. Kumar, A. & Krishna, A. P. Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto Int. 33(2), 105–129 (2018).

    Google Scholar 

  65. Alrawi, I., Chen, J. & Othman, A. A. Groundwater potential zone mapping: integration of multi-criteria decision analysis (MCDA) and GIS techniques for the Al-Qalamoun region in Syria. ISPRS Int. J. Geo-Inf. 11(12), 603. https://doi.org/10.3390/IJGI11120603 (2022).

    Google Scholar 

  66. Takele, T., Mechal, A. & Berhe, B. A. Assessing groundwater potential in the Ziway Lake watershed using geographical information system, analytic hierarchy process, and drinking water quality index. Glob. Chall. 9(6), 2400354 (2025).

    Google Scholar 

  67. Takele, T., Mechal, A. & Berhe, B. A. Evaluation of groundwater recharge potential using geospatial analysis in the Ziway Lake watershed, Ethiopian Rift: A GIS and AHP-based methodological framework. Environ. Sustain. Indic. 26, 100692 (2025).

    Google Scholar 

Download references

Funding

The present work did not receive any financial assistance from any state funding agency.

Author information

Authors and Affiliations

  1. Centre for Applied Geology, The Gandhigram Rural Institute (Deemed to Be University), Gandhigram, Dindigul, Tamil Nadu, 624302, India

    K. Pragadeeshwaran, B. Gurugnanam, M. Bagyaraj & S. Bairavi

  2. Department of Civil Engineering, School of Engineering, Mohan Babu University, Tirupati, Andhra Pradesh, 517102, India

    D. Karunanidhi

  3. School of Earth Sciences, College of Natural and Computational Sciences, Mekelle University, P.O. Box 231, Mekelle, Ethiopia

    Berihu Abadi Berhe

Authors
  1. K. Pragadeeshwaran
    View author publications

    Search author on:PubMed Google Scholar

  2. B. Gurugnanam
    View author publications

    Search author on:PubMed Google Scholar

  3. M. Bagyaraj
    View author publications

    Search author on:PubMed Google Scholar

  4. S. Bairavi
    View author publications

    Search author on:PubMed Google Scholar

  5. D. Karunanidhi
    View author publications

    Search author on:PubMed Google Scholar

  6. Berihu Abadi Berhe
    View author publications

    Search author on:PubMed Google Scholar

Contributions

K. Pragadeeshwaran—wrote the main manuscript text and prepared figures and tables All authors reviewed the manuscript. B. Gurugnanam (gurugis4u@gmail.com)-wrote the main manuscript text and prepared tables. All authors reviewed the manuscript. M. Bagyaraj (geobagya25@gmail.com)-wrote the main manuscript text and prepared figures All authors reviewed the manuscript. S. Bairavi (bairuguru98@gmail.com)-wrote the main manuscript text and prepared tables All authors reviewed the manuscript. D. Karunanidhi (karunasamygis@gmail.com)-wrote the main manuscript text and prepared figures and tables. All authors reviewed the manuscript. Berihu Abadi Berhe -Read and reviewed the final manuscript and made ready for submission.

Corresponding authors

Correspondence to B. Gurugnanam or Berihu Abadi Berhe.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pragadeeshwaran, K., Gurugnanam, B., Bagyaraj, M. et al. Groundwater potential zones demarcation in the hard rock province of South India: insights from remote sensing, GIS and AHP techniques. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35734-9

Download citation

  • Received: 14 August 2025

  • Accepted: 07 January 2026

  • Published: 25 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35734-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Groundwater potential
  • Analytic hierarchy process
  • GIS
  • Hard rock area
  • Receiver operating characteristic (ROC)
  • Area under the curve (AUC)
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing