Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
A comprehensive study of the crystal structure and dynamics of [N(C3H7)4]2Cd2Cl6
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

A comprehensive study of the crystal structure and dynamics of [N(C3H7)4]2Cd2Cl6

  • Huiyeong Ju1,
  • Yun Sang Shin2 &
  • Ae Ran Lim2,3 

Scientific Reports , Article number:  (2026) Cite this article

  • 676 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Chemistry
  • Materials science
  • Physics

Abstract

Single crystals of the organic–inorganic hybrid compound [N(C3H7)4]2Cd2Cl6 were synthesized by an aqueous solution method, and their structural and dynamic properties were systematically investigated. Thermal analyses revealed phase transitions at 321 K (TC1) and 445 K (TC2), followed by melting at 476 K. Single-crystal X-ray diffraction indicated that the compound crystallizes in a triclinic system with space group P\(\:\stackrel{-}{1}\), showing variations in lattice parameters across TC1 while maintaining the same symmetry. On the other hand, whereas the 1H, 13C, and 14N MAS NMR chemical shifts of the [N(C3H7)4] cations showed little variation near TC1, the 113Cd MAS NMR spectra of the Cd2Cl6 anions revealed a clear change, with two Cd sites (Cd(1) and Cd(2)) merging into a single site. This agrees well with the SCXRD results, indicating that the phase transition at TC1 arises primarily from an order–disorder transition of the Cd2Cl6 anions rather than the [N(C3H7)4] cations. In addition, temperature-dependent line narrowing in the1H, 13C, 14N, and 113Cd NMR spectra reflects enhanced molecular dynamics at elevated temperatures. These results provide insights into the phase behavior and stability of [N(C3H7)4]2Cd2Cl6, highlighting its potential relevance for future functional applications.

Similar content being viewed by others

Study on structural geometry and dynamic property of [NH3(CH2)5NH3]CdCl4 crystal at phases I, II, and III

Article Open access 11 March 2022

Investigating the physicochemical properties, structural attributes, and molecular dynamics of organic–inorganic hybrid [NH3(CH2)2NH3]2CdBr4·2Br crystals

Article Open access 15 April 2023

Growth, structure, phase transition, thermal properties, and structural dynamics of organic–inorganic hybrid [NH3(CH2)5NH3]ZnCl4 crystal

Article Open access 07 October 2022

Data availability

The datasets generated and/or analysed during the current study are available in the CCDC 2491598, 2491602.

References

  1. Rao, C. N. R., Cheetham, A. K. & Thirumurugan, A. Hybrid inorganic–organic materials: a new family in condensed matter physics. J. Phys. : Condens. Matter. 20, 083202 (2008).

    Google Scholar 

  2. Shao, T. et al. F. 2D lead-free organic–inorganic hybrid exhibiting dielectric and structural phase transition at higher temperatures. Cryst. Eng. Comm. 24, 4346 (2022).

    Google Scholar 

  3. Han, K. et al. Organic–inorganic hybrid compound [H2-1,5-Diazabicyclo[3.3.0]octane]ZnBr4 with reverse symmetry breaking shows a switchable dielectric anomaly and robust second harmonic generation effect. Inorg. Chem. 61, 11859 (2022).

    Google Scholar 

  4. Saikumar, I., Ahmad, S., Baumberg, J. J. & Prakash, V. Fabrication of excitonic luminescent inorganic–organic hybrid nano- and microcrystals. Scr. Mater. 67, 834 (2012).

    Google Scholar 

  5. Staskiewicz, B., Czupinski, O. & Czapla, Z. On some spectroscopic properties of a layered 1,3-diammoniumpropylene tetrabromocadmate hybrid crystal. J. Mol. Struct. 1074, 723 (2014).

    Google Scholar 

  6. Lim, A. R. Crystal structure, structural geometry, and molecular motion of organic-inorganic perovskite [N(CH3)4]2MnCl4 crystals at phases I, II, and III. Sci. Rep. 14, 26607 (2024).

    Google Scholar 

  7. Na, C. & Lim, A. R. Elucidation of crystal growth, structural characterization, thermal properties, and molecular dynamics using NMR near phase transition temperature of [N(CH3)4]2CoCl4. Sci. Rep. 15, 28107 (2025).

    Google Scholar 

  8. El-Korsahy, A. & Brik, M. G. Crystal growth, spectroscopic and crystal field studies of [N(CH3)4]2MnCl4 and [N(CH3)4]2CoCl4 single crystals in the paraelectric phase. Solid State Commun. 135, 298 (2005).

    Google Scholar 

  9. Batyuk, A. Y., Kapustyanyk, V. B. & Korchak, Y. M. Manifestations of phase transitions and the thermooptical-memory effect in the absorption spectra of (N(CH3)4)2CuCl4 crystals. J. Appl. Spectrosc. 72, 413 (2005).

    Google Scholar 

  10. Abu El-Fadl, A., El-Korashy, A. & El-Zahed, H. Electrical investigations in the normal and incommensurate phases of [N(CH3)4]2ZnCl4 single crystals. J. Phys. Chem. Solids. 63, 375 (2002).

    Google Scholar 

  11. Koshiji, N., Miyoshi, T. & Mashiyama, H. Electron density distribution of the commensurate phase of TMATC-Mn. Ferroelectrics 440, 119 (2012).

    Google Scholar 

  12. Koshiji, N. & Mashiyama, H. Structural study of ordering in the normal-commensurate transition of {N(CH3)4}2MnCl4. J. Phys. Soc. Japan. 80, 64602 (2011).

    Google Scholar 

  13. Brik, M. G., El-Korashy, A. & Almokhtar, M. Exchange charge model calculations of crystal field parameters and crystal field energy levels for [N(CH3)4]2CoCl4 and [N(CH3)4]2MnCl4 single crystals. J. Alloys Compd. 459, 71 (2008).

    Google Scholar 

  14. Koshiji, N. & Mashiyama, H. Disordered and displacive models for the structure of the normal phase in {N(CH3)4}2MnCl4. J. Phys. Soc. Japan. 69, 3853 (2000).

    Google Scholar 

  15. Koksal, F., Bahadir, S., Basaran, E. & Yerli, Y. Temperature independent isotropic EPR spectra of [(CH3)4N]2MnCl4 and [(CH3)4N]2FeCl4 single crystals. Z. Naturforsch. 54a, 557 (1999).

    Google Scholar 

  16. El-Korashy, A., El-Zahed, H. & Radwan, M. Optical studies of [N(CH3)4]2CoCl4, [N(CH3)4]2MnCl4 single crystals in the normal paraelectric phase. Physica B. 334, 75 (2003).

    Google Scholar 

  17. Bolesta, I., Furgala, Y. & Kityk, I. Effects of phase transitions in luminescience features of [N(CH3)4]2MnCl4 single crystals. Ferroelectrics 56, 1 (1996).

    Google Scholar 

  18. Marco de Lucas, M. C., Rodriguez, F. & Moreno, M. Optical investigations on {N(CH3)4}2MnCl4: a new phase transition at 90 K. Ferroelectrics 109, 21 (1990).

    Google Scholar 

  19. Fuith, A., Schranz, W., Warhanek, H., Kroupa, J. & Lhotska, V. Optical investigations in [N(CH3)4]2MnCl4. Phase Transitions. 27, 15 (1990).

    Google Scholar 

  20. Shimomura, S., Hamaya, N. & Fujii, Y. High-resolution X-ray diffraction study of commensurate-incommensurate phase transition in [N(CH3)4]2MnCl4 under pressure. J. Phys. Soc. Japan. 65, 661 (1996).

    Google Scholar 

  21. Shimomura, S., Hamaya, N. & Fujii, Y. Systematics in the commensurate-incommensurate phase transition in [N(CH3)4]2MCl4 (M = Zn, Fe, and Mn) under pressure. Phys Rev. B. 53, 8975 (1996).

    Google Scholar 

  22. Hamaya, N., Shimomura, S. & Fujii, Y. Systematics in the modulated phases of [N(CH3)4]2MnCl4. J. Phys. : Condens. Matter. 3, 3387 (1991).

    Google Scholar 

  23. Karpa, I. V. et al. Electronic spectra of [N(CH3)4]2CoCl4 microcrystals in thin films. J. All Spectro. 79, 888 (2013).

    Google Scholar 

  24. Kroupa, J., Schranz, W., Fuith, A. & Warhanek, H. Saint-Gregoire, P. Study of the linear birefringence and domain structure in [N(CH3)4]2CoCl4 and [N(CD3)4]2ZnCl4. Ferroelectrics 125, 165 (1992).

    Google Scholar 

  25. Folcia, C. L. & Perez-Mato, J. M. Nonsoliton model for dielectric anomalies at the incommensurate-ferroelectric phase transitions in [N(CH3)4]2XCl4 (X = Co, Zn). Phys Rev B. 42, 8499 (1990).

    Google Scholar 

  26. Folcia, C. L., Perez-Mato, J. M., Zuniga, F. J., Madariaga, G. & Tello, M. J. A model for the dielectric behaviour of [N(CH3)4]2XCl4 with X = Co, Zn. Ferroelectrics 105, 303 (1990).

    Google Scholar 

  27. Lim, A. R. Roles of chemically inequivalent N(CH3)4 ions in phase transition temperatures in [N(CH3)4]2CoCl4 by single-crystal NMR and MAS NMR. Chem. Phys. 436–437, 46 (2014).

    Google Scholar 

  28. Lim, A. R. Nuclear magnetic resonance in [N(CH3)4]2CoCl4 single crystals: transferred hyperfine interaction and spin-lattice relaxation rate. J. Phys. Chem. Solids. 66, 973 (2005).

    Google Scholar 

  29. Lim, A. R. Changing structural properties of mixed crystals [N(CH3)4]2Zn1-xCoxCl4 (x = 0, 0.5, 0.7, 0.9, and 1) by magic angle spinning nuclear magnetic resonance. Mater. Chem. Phys. 171, 379 (2016).

    Google Scholar 

  30. Lim, A. R. Ferroelastic phase transitions by 14N NMR spectra in [N(CH3)4]2CoCl4 and [N(CH3)4]2ZnCl4 single crystals. Solid State Commun. 242, 25 (2016).

    Google Scholar 

  31. Lim, A. R. & Jung, W. K. Proton magnetic resonance study of the phase transitions of [N(CH3)4]2BCl4 (B = 59Co, 63Cu, 67Zn, and 113Cd) single crystals. J. Phys. Chem. Solids. 66, 1795 (2005).

    Google Scholar 

  32. Poprawski, R., Liber, A. & Malek, E. Dilatometric investigations of overcritical behavious in [N(C2H5)4]2CuCl4 crystals. Acta Phys. Polonica A. 98, 61 (2000).

    Google Scholar 

  33. Tylczynski, Z., Biskupski, P. & Slaboszewska, M. Dielectric dispersion in [N(C2H5)4]2MeCl4 crystals. Ferroelectrics 272, 315 (2002).

    Google Scholar 

  34. Kandhaswamy, M. A. & Srinivasan, V. Synthesis and characterization of Tetrarthylammonium Tetrachlorocobaltate crystals. Bull. Mater. Sci. 25, 41 (2002).

    Google Scholar 

  35. Gesi, K. Effect of hydrostatic pressure on the phase transitions in [N(C2H5)4]2CuCl4. Ferroelectrics 285, 139 (2003).

    Google Scholar 

  36. Biskupski, P., Slaboszewska, M. & Tylczynski, Z. Changes in the optical properties at phase transitions in TEA2MeCl4 (Me = Zn, Mn, Hg, Cu) crystals. Phys B. 370, 6 (2005).

    Google Scholar 

  37. Sheleg, A. U., Natumovets, A. M., Dekola, T. I. & Tekhanovich, N. P. Effect of γ irradiation on the structural and thermal properties of [N(C2H5)4]2ZnBr4 in the vicinity of a first-order phase transition. Phys. Solid State. 48, 354 (2006).

    Google Scholar 

  38. Maczka, M., Cizman, A., Poprawski, R. & Hanuza, J. Temperature-dependent vibrational studies of [N(C2H5)4]2MnCl4. J. Raman Spectrosc. 38, 1622 (2007).

    Google Scholar 

  39. Sheleg, A. U., Zub, E. M. & Yachkovskii, A. Y. Crystallographic characteristics and phase transitions in the [N(C2H5)4]2CdBr4 crystal in the low-temperature range. Phys. Solid State. 49, 1973 (2007).

  40. Dekola, T. I., Sheleg, A. U. & Tekhanovich, N. P. Heat capacity of the [N(C2H5)4]2CdBr4 crystal in the temperature range 80–300 K. Phys. Solid State. 49, 1766 (2007).

    Google Scholar 

  41. Lim, A. R. & Lim, K. Y. Phase-transition mechanisms of [N(C2H5)4]2BCl4 and [N(CH3)4]2BCl4 (B = 63Cu and 67Zn) single crystals studied by proton NMR. Solid State Commun. 147, 11 (2008).

    Google Scholar 

  42. Biskupski, P. & Tylczynski, Z. Structure of TEA2ZnCl4 crystal surfaces studied by AFM. Phase Transition. 81, 971 (2008).

    Google Scholar 

  43. Ostrowski, A. & Cizman, A. EPR studies of linewidth anomalies at phase transitions in [N(C2H5)4]2MnCl4. Physica B. 403, 3110 (2008).

    Google Scholar 

  44. Lim, A. R. Study on Ethyl groups with two different orientations in [N(C2H5)4]2CuBr4. J. Phys. Chem. Solids. 93, 59 (2016).

    Google Scholar 

  45. Lim, A. R. Study of the ferroelastic phase transition in the Tetraethylammonium compound [N(C2H5)4]2ZnBr4 by magic-angle spinning and static NMR. AIP Adv. 6, 035307 (2016).

    Google Scholar 

  46. Lim, A. R., Kim, M. S. & Lim, K. Y. Nuclear magnetic resonance study of the ferroelastic phase transition of order-disorder type [N(C2H5)4]2CdCl4. Solid State Sci. 58, 101 (2016).

    Google Scholar 

  47. Lim, A. R. & Lim, K. Y. Structural changes near phase transition temperatures for the [N(C2H5)4] groups in hydrated [N(C2H5)4]2CuCl4∙xH2O. J. Therm. Anal. Calorim. 130, 879 (2017).

    Google Scholar 

  48. Bechir, M. B., Rhaiem, A. M. & Synthesis Thermal analysis, optical, electric properties and conduction mechanism of hybrid halogenometallates: [N(C2H5)4]2CoCl4. J. Phys. Soc. Japan. 90, 74709 (2021).

    Google Scholar 

  49. Souissi, H. et al. Experimental and optical studies of the new organic inorganic bromide: [(C3H7)4N]2CoBr4. Opt. Mater. 129, 112513 (2022).

    Google Scholar 

  50. Gzaiel, M. B., Oueslati, A., Hlel, F. & Gargouri, M. Synthesis, crystal structure, phase transition and electrical conduction mechanism of the new [(C3H7)4N]2MnCl4 compound. Physica E. 83, 405 (2016).

    Google Scholar 

  51. Banupriya, K., Revathi, A., Sudha, D., Kirubavathy, S. J. & Umarani, R. Tetra-propylammonium tribromocuprate complex[(C3H7)4N]CuBr3(II)-synthesis, thermal and spectral characterization. Mater. Today: proceedings. 45, 8024 (2021).

  52. Moutia, N., Oueslati, A., Gzaiel, M. B. & Khirouni, K. Crystal structure and AC conductivity mechanism of [N(C3H7)4]2CoCl4 compound. Physica E. 83, 88 (2016).

    Google Scholar 

  53. Chkoundali, S., Hlel, F. & Khemekhem, H. Synthesis, crystal structure, thermal and dielectric properties of tetrapropylammonium tetrabromozincate [N(C3H7)4]2[ZnBr4] compound. Appl Phys A. 122, 1066 (2016).

    Google Scholar 

  54. Moutia, N., Gzaiel, M. B., Oueslati, A. & Khirouni, K. Electric characterization and vibrational spectroscopic investigations of order-disorder phase transitions in [N(C3H7)4]2CoCl4 compound. J. Mol. Struct. 1134, 697 (2017).

    Google Scholar 

  55. Chkoundali, S. & Aydi, A. Electrical conductivity and vibrational studies induced phase transition in [N(C3H7)4]2ZnBr4. J. Adv. Dielectr. 11, 2150005 (2021).

    Google Scholar 

  56. Khalfa, M. et al. Synthesis, structural and electrical characterization of a new organic inorganic bromide: [(C3H7)4N]2CoBr4. RSC Adv. 12, 2798 (2022).

    Google Scholar 

  57. Taktak, O. et al. Optical investigations and theoretical simulation of organic-inorganic hybrid: TPA-CoCl4. Opt. Mater. 150, 115251 (2024).

    Google Scholar 

  58. Khalfa, M. et al. New organic-inorganic bromides [N(C3H7)4]2MBr4 (M = Hg and Cd): synthesis, crystal structure and vibrational characterization. J. Alloy Compd. 6, 181334 (2025).

    Google Scholar 

  59. Kanagarajan, B., Parveen, S., Ramasamy, R. & Ramasamy, U. New tetrapropyl-ammonium tetrabromozincate complex [N(C3H7)4]2ZnBr4 (II)-synthesis, spectral, thermal characterization and antioxidant activity. Bull. Chem. Soc. Ethiop. 37, 623 (2023).

    Google Scholar 

  60. Oueslati, A. et al. Infrared, polarized Raman and Ab initio calculations of the vibrational spectra of [N(C3H7)4]2Cu2Cl6 crystals. Vib. Spectrosc. 64, 10 (2013).

    Google Scholar 

  61. Dhouib, I., Guionneau, P., Pechev, S., Mhiri, T. & Elaoud, Z. Crystal structure and spectroscopic study of bis-tetrapropylammonium hexachlorodicuprate (II), [N(C3H7)4]2Cu2Cl6. Eur. J. Chem. 4, 117 (2013).

    Google Scholar 

  62. Mbarek, I. et al. Unraveling the properties of [TPA]2Cu2Br6: A holistic investigation into structure, optics, magnetism and dielectric characteristics. J. Mol. Struct. 1321, 140115 (2025).

    Google Scholar 

  63. Oueslati, A. & Gargouri, M. Studies on structural, electrical, and transport properties of [(C3H7)4N]2Cu2Br6 compound. J. Alloys Compd. 739, 1089 (2018).

    Google Scholar 

  64. Hannachi, N., Bulou, A., Chassenieux, C., Guidara, K. & Hlel, F. Temperature study of [N(C3H7)4]2Cd2Cl6 by thermal analysis, Raman scattering, and X-ray powder diffraction: evidence of phase transitions. Physica A. 390, 2987 (2011).

    Google Scholar 

  65. Hannachi, N., Guidara, K., Bulou, A., Gargouri, M. & Hlel, F. Polarized Raman study of [N(C3H7)4]2Cd2Cl6 single crystal. Spectrochimica A. 77, 457 (2010).

    Google Scholar 

  66. Hannachi, N., Chaabane, I., Guidara, K., Bulou, A. & Hlel, F. AC electrical properties and dielectric relaxation of [N(C3H7)4]2Cd2Cl6 single crystal. Mater Sci. Engineering. B 172, 24 (2010).

    Google Scholar 

  67. Hannachi, N., Guidara, K., Bulou, A. & Hlel, F. Structural characterization and AC conductivity of Bis tetrapropylammonium hexachlorado-dicadmate, [N(C3H7)4]2Cd2 Cl6. Mater. Res. Bull. 45, 1754 (2010).

    Google Scholar 

  68. Dhouib, I., Guionneau, P., Pechev, S., Mhiri, T. & Elaoud, Z. Crystal structure and spectroscopic study of bis-tetrapropylammonium hexachlorodicuprate (II), [N(C3H7)4]2Cu2Cl6. Euro. J. Chem. 4, 117 (2013).

    Google Scholar 

  69. Oueslati, A. et al. Infrared, polarized Raman and Ab initio calculations of the vibrational spectra of [N(C3H7)4]2Cu2Cl6 crystals. Vib. Spectro. 64, 10 (2013).

    Google Scholar 

  70. Gzaiel, M. B. et al. Synthesis, crystal structure, thermal analysis, and electrical properties of Bis tetrapropylammonium hexachloro-dizincate compound. Ionics 20, 221 (2014).

    Google Scholar 

  71. Gzaiel, M. B., Oueslati, A. & Gargour, M. Ac conductivity and transport properties of [N(C3H7)4]2Zn2Cl6 compound. J. Clust Sci. 26, 1577 (2015).

    Google Scholar 

  72. Gzaiel, M. B. et al. Using Raman spectroscopy to understand the origin of the phase transitions observed in [(C3H7)4N]2Zn2Cl6 compound. Spectro Acta A 145, 223 (2015).

  73. SMART and SAINT-Plus v6.22. Bruker AXS Inc., Madison, Wisconsin, USA, (2000).

  74. Koenig, J. L. Spectroscopy of Polymers (Elsevier, 1999).

  75. Abragam, A. The Principles of Nuclear Magnetism (Oxford University Press, 1961).

Download references

Acknowledgements

This research was supported by the Regional Innovation System & Education (RISE) program through the Jeonbuk RISE Center, funded by the Ministry of Education (MOE) and the Jeonbuk State, Republic of Korea (2025-RISE-13-JJU).

Funding

This research was supported by the Regional Innovation System & Education (RISE) program through the Jeonbuk RISE Center, funded by the Ministry of Education (MOE) and the Jeonbuk State, Republic of Korea (2025-RISE-13-JJU).

Author information

Authors and Affiliations

  1. Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon, 34133, South Korea

    Huiyeong Ju

  2. Department of Science Education, Jeonju University, Jeonju, 55069, South Korea

    Yun Sang Shin & Ae Ran Lim

  3. Graduate School of Carbon Convergence Engineering, Jeonju University, Jeonju, 55069, South Korea

    Ae Ran Lim

Authors
  1. Huiyeong Ju
    View author publications

    Search author on:PubMed Google Scholar

  2. Yun Sang Shin
    View author publications

    Search author on:PubMed Google Scholar

  3. Ae Ran Lim
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.R. Lim designed the project, NMR experiment, and wrote the manuscript. H. Ju performed the SCXRD measurements, Y. S. Shin carried out the DSC, TGA, and optical microscopy experiment.

Corresponding author

Correspondence to Ae Ran Lim.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ju, H., Shin, Y.S. & Lim, A.R. A comprehensive study of the crystal structure and dynamics of [N(C3H7)4]2Cd2Cl6. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35886-8

Download citation

  • Received: 03 October 2025

  • Accepted: 08 January 2026

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35886-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing