Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Stratigraphic and structural architecture of the inner ramp carbonates in the Northern Galala Plateau, Egypt: synergizing remote sensing and field data
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 05 February 2026

Stratigraphic and structural architecture of the inner ramp carbonates in the Northern Galala Plateau, Egypt: synergizing remote sensing and field data

  • Mohamed S. Fathy  ORCID: orcid.org/0000-0002-4693-914X1,
  • Mohamed A. Abd El‑Wahed  ORCID: orcid.org/0000-0002-6506-79141,
  • Mahmoud Faris1,
  • Abdallah S. Ali1 &
  • …
  • Mohamed Attia  ORCID: orcid.org/0009-0007-6007-67352,3 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Environmental sciences
  • Solid Earth sciences

Abstract

The new high-altitude road in New Galala City offers a valuable opportunity to study the carbonate platform of the Southern Galala Formation at the Northern Galala Plateau in Egypt. The research examines this carbonate platform through remote sensing, structural, and stratigraphic methods. For the first time, remote sensing techniques using Landsat-9 have been applied to differentiate the carbonate platform rocks and their depositional environments. Tectonic uplift has shaped a complex topography and high structural elevation, resulting in a rimmed platform with varying slope angles. Lithostratigraphically, the Southern Galala Formation has been divided into three new formal members: Wadi Al-Rasis, Gebel Ealyan, and New Galala City. The Wadi Al-Rasis and New Galala City members are mainly composed of pale brown, thin, laminated dolostones with some siliciclastics. These members are characterized by microbial mudstone and wackestone microfacies of tidal flat environments. The Gebel Ealyan Member features grey, fossil-rich limestones with sediments that have undergone karstification. Key fossils include large benthonic foraminifera. Microscopic studies of this member reveal various bioclastic packstone/grainstone microfacies of lagoon and shoals’ environments. Critical diagenetic processes include micritization, cementation, and dolomitization, thereby enhancing the economic significance of the rocks as hosts to hydrocarbon reserves, groundwater aquifers, and industrial minerals. Tectonic uplift, eustatic sea-level changes, and sedimentary dynamics influence the structures that control the studied inner-ramp carbonates.

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Read, J. F. Carbonate platform facies models. AAPG Bulletin 69, 1–21. https://doi.org/10.1306/AD461B79-16F7-11D7-8645000102C1865D (1985).

    Google Scholar 

  2. Tucker, M. E. & Wright, V. P. Carbonate Sedimentology. Blackwell Scientific Publications, Oxford, 482pp. DOI:https://doi.org/10.1002/9781444314175 (1990).

    Google Scholar 

  3. Papakonstantinou, M., Sergiou, S., Geraga, M., Prandekou, A., Dimas, X., Fakiris, E., Christodoulou, D., Papatheodorou, G. Sedimentological, Geochemical, and environmental assessment in an Eastern Mediterranean, stressed coastal setting: the Gialova Lagoon, SW Peloponnese, Greece. Water 16, 2312. https://doi.org/10.3390/w16162312 (2024).

    Google Scholar 

  4. Marshall, J.C., Tibby, J., Moss, P., Martin, H., Gontz, A., Lau, A., Jacobsen, G.E., Cadd, H., Gadd, P.S., Negus, P., Mcgregor, G.B., Hofmann, H., Schulz, C., Barr, C., Maizma, S., Hotchkis, M., Cloutier, N. High-resolution analysis of sediments from eighteen Mile swamp (eastern Australia) records its transition from a fluctuating coastal lagoon to stable freshwater swamp. Journal of Quaternary Science 40, 684–710. https://doi.org/10.1002/jqs.3677 (2024).

    Google Scholar 

  5. Flügel, E. Microfacies of Carbonate Rocks: Analysis, Interpretation and Application. Springer-Verlag, Berlin Heidelberg, 976pp (2004).

    Google Scholar 

  6. James, N.P. Shallowing-Upward Sequences in Carbonates. In: Walker, R.G. (Ed.), Facies Models (2nd ed.). Geoscience Canada Reprint Series 1, Geological Association of Canada 213–228 (1984).

  7. Perović, M., Obradović, V., Zuber-Radenković, V., Mitrinović, D., Knoeller, K. & Turk Sekulić, M. Integrated analysis of ammonium origins in a Serbian anoxic alluvial aquifer: insight from physicochemical, isotopic, Microbiological data. Applied Geochemistry 171, 106103. https://doi.org/10.1016/j.apgeochem.2024.106103 (2024).

    Google Scholar 

  8. Farouk, S., Fagelnour, M., Zaky, A.S., Arafat, M., Salama, A., Al-Kahtany, K., Gentzis, T., Jovane, L. Petroleum System Evaluation: Hydrocarbon Potential and Basin Dynamics in Abu Darag Sub-Basin, Northern Gulf of Suez (Egypt). Minerals 14, 1154. https://doi.org/10.3390/min14111154 (2024).

  9. Nait-Hammou, H., El Khalidi, K., Makaoui, A., Chierici, M., Jamal, C., Mejjad, N., Khalfaoui, O., Salhi, F., Idrissi, M. & Zourarah, B. Environmental factors driving carbonate distribution in marine sediments in the Canary current upwelling system. J. Marine Science and Engineering 13, 1709. https://doi.org/10.3390/jmse13091709 (2025).

    Google Scholar 

  10. Zhang, J., Hu, J., Liu, B. & Zhang, X. The genesis mechanisms, geological characteristics, and exploration and development of deep-sea carbonate reservoirs: current status and future prospects., Advances in Resources Research. https://doi.org/10.50908/arr.5.3_1133 (2025).

    Google Scholar 

  11. Kakemem, U., Jafarian, A., Husinec, A., Adabi, M.H. & Mahmoudi, A. Facies, sequence framework, and reservoir quality along a triassic carbonate ramp: Kangan Formation, South Pars Field, Persian Gulf Superbasin. Journal of Petroleum Science and Engineering 198, 108166. https://doi.org/10.1016/j.petrol.2020.108166 (2021).

    Google Scholar 

  12. Zhu, Y., Zheng, J., Zhang, J., Luo, X., Yu, G., Li, J., Hu, F., & Yang, G. Facies, Depositional environment and reservoir quality of an early cambrian carbonate ramp in the Tarim Basin, NW China. Minerals 13, 791. https://doi.org/10.3390/min13060791 (2023).

    Google Scholar 

  13. Al-Qayim, B.A. The paleogene forebulge carbonate Banks, Zagros foreland basin, Northern iraq: their Paleogeography, basin Evolution, and economic implications. The Iraqi Geological Journal 230–253. https://doi.org/10.46717/igj.57.2c.16ms-2024-9-24 (2024).

  14. Veysi, H., Taghabi, S.J., Babaiy, M., Tafazoli, M. Lead and barium strata-bound deposits in eocene carbonate ramps of iran: implications for the influence of sedimentary environment characteristics on the distribution of ore reserves. Ore and Energy Resource Geology 18, 100073. https://doi.org/10.1016/j.oreoa.2024.100073 (2025).

    Google Scholar 

  15. Cantrell, D.L., Swart, P.K., Handford, C.R., Kendall, C., & Westphall, H. Geology and production significance of dolomite, Arab-D reservoir, Ghawar field, Saudi Arabia. GeoArabia, p. 45–60.der Universität Bremen, v. 112, p. 1–135 (2001).

    Google Scholar 

  16. El-Yamani, M.S., John, C.M., Bell, R. Stratigraphic evolution and karstification of a cretaceous Mid‐Pacific Atoll (Resolution Guyot) resolved from core‐log‐seismic integration and comparison with modern and ancient analogues. Basin Research 34, 1536–1566. https://doi.org/10.1111/bre.12670 (2022).

    Google Scholar 

  17. Zerga, B. Karst topography: Formation, processes, characteristics, landforms, degradation and restoration: A systematic review. Watershed Ecology and the Environment 6, 252–269. https://doi.org/10.1016/j.wsee.2024.10.003 (2024).

    Google Scholar 

  18. Al-Hashim, M.H., Al-Aidaros, A. & Zaidi, F.K. Geological and Hydrochemical Processes Driving Karst Development in Southeastern Riyadh, Central Saudi Arabia. Water 16, 1937. https://doi.org/10.3390/w16141937 (2024).

  19. Pour, A.B., Ranjbar, H., Sekandari, M., Abd El-Wahed, M.A., Hossain, M.S., Hashim, M., Yousefi, M., Zoheir, B., Wambo, J.D.T. & Muslim, A.M. Remote sensing for mineral exploration., Geospatial Analysis Applied to Mineral Exploration. https://doi.org/10.1016/b978-0-323-95608-6.00002-0 (2023).

  20. Aboelkhair, H., Abdelhalim, A., Hamimi, Z. & Al-Gabali, M. Reliability of using ASTER data in lithologic mapping and alteration mineral detection of the basement complex of West Berenice, southeastern Desert, Egypt. Arabian J. Geosci. 13, 287 (2020).

    Google Scholar 

  21. Shebl, A., Badawi, M., Dawoud, M., Abd El-Wahed, M., El-Dokouny, H.A. & Csámer, Á. Novel comprehensions of lithological and structural features gleaned via Sentinel 2 texture analysis. Ore Geology Reviews 168, 106068. https://doi.org/10.1016/j.oregeorev.2024.106068 (2024).

    Google Scholar 

  22. Kamel, M., Abdeen, M.M., Youssef, M.M., Orabi, A.M. & Abdelbaky, E. Utilization of landsat-8 (OLI) image data for geological mapping of the neoproterozoic basement rocks in the central Eastern desert of Egypt. J. Indian Soc. Remote Sens. 50 (3), 469–492 (2022).

    Google Scholar 

  23. Abd El-Wahed, M.A. & Thabet, I.A., 2017. Strain geometry, microstructure and metamorphism in the dextral transpressional Mubarak Shear Belt, Central Eastern Desert, Egypt. Geotectonics 51(4), 438–462 (2017).

  24. Abd El-Wahed, M.A., Lebda, E., Ali, A., Kamh, S. & Attia, M. The structural geometry and metamorphic evolution of the Umm Gheig shear belt, central Eastern Desert, egypt: implications for exhumation of Sibai core complex during oblique transpression. Arab J Geosci 12, 764. https://doi.org/10.1007/s12517-019-4760-y (2019).

    Google Scholar 

  25. Abd El-Wahed, M., Kamh, S., Abu Anbar, M., Zoheir, B., Hamdy, M., Abdeldayem, A., Lebda, E.M. & Attia, M. Multisensor Satellite Data and Field Studies for Unravelling the Structural Evolution and Gold Metallogeny of the Gerf Ophiolitic Nappe, Eastern Desert, Egypt. Remote Sensing 15, 1974. https://doi.org/10.3390/rs15081974 (2023).

  26. Abd El-Wahed, M.A., Eldosouky, A.M., Kassem, O.M.K., Abo-Rayan, A.A. & Attia, M. Kilometer-scale hook-shaped Type2/Type3 folds due to refolding and transpressional strike-slip reversal in the Egyptian Nubian Shield, East African orogenic belt. Precambrian Research 429, 107912. https://doi.org/10.1016/j.precamres.2025.107912 (2025a).

    Google Scholar 

  27. Abd El-Wahed, M.A., Kamh, S., Attia, M. & Eldosouky, A.M. Structural geometry and gold ores along the first outlined N–S dextral shear zone in the Egyptian Nubian Shield, East African orogenic belt: New insights from integrated remote sensing, gravity, magnetic and field studies. Geomechanics and Geophysics for Geo-Energy and Geo-Resources 11, 76. https://doi.org/10.1007/s40948-025-01003-8 (2025).

  28. Eldosouky, A.M., Abd El–Wahed, M.A., Saada, S.A. & Attia, M. New Insights into Structural and Tectonic Evolution of Safaga-Semna Shear Belt: Advanced Integration of Aeromagnetic, Remote Sensing and Field Studies. Geomech Geophys Geo-energ Geo-resour 11, 31. https://doi.org/10.1007/s40948-025-00946-2 (2025).

  29. Eldosouky, A.M., El-Wahed, M.A.A., Attia, M., Saada, S.A., & Abbas, M.A. Advanced integrated strategy for structural and mineralogical exploration of inaccessible regions employing remote sensing and multiscale analysis of aeromagnetic data. Scientific Reports 15, 31205. https://doi.org/10.1038/s41598-025-16618-w (2025).

    Google Scholar 

  30. Zoheir, B., Abd El-Wahed, M.A., Pour, A.B. & Abdelnasser, A. Orogenic gold in transpression and transtension zones: field and remote sensing studies of the Barramiya–Mueilha sector, Egypt. Remote Sensing 11, 2122. https://doi.org/10.3390/rs11182122 (2019).

    Google Scholar 

  31. Zoheir, B., Emam, A., Abd El-Wahed, M. & Soliman, N. Gold endowment in the evolution of the Allaqi-Heiani suture, egypt: A synthesis of geological, structural, and space-borne imagery data. Ore Geology Reviews 110, 102938. https://doi.org/10.1016/j.oregeorev.2019.102938 (2019).

    Google Scholar 

  32. Abd El-Wahed, M.A., Kamh, S.Z. Evolution of Strike-Slip duplexes and Wrench-Related folding in the central part of al Jabal al Akhdar, NE Libya. The Journal of Geology 121, 173–195. https://doi.org/10.1086/669249 (2013).

    Google Scholar 

  33. Abd El-Wahed, M.A. Shear-related gold mineralization in the Egyptian Nubian Shield, East African orogenic belt. Mediterranean Geoscience Reviews 7, 185–253. https://doi.org/10.1007/s42990-025-00168-4 (2025).

    Google Scholar 

  34. Abd El-Wahed, M., Attia, M. Transpressional inversion and fold superimposition in the Southern Eastern desert of Egypt, East African orogenic belt. Journal of the Geological Society 182. https://doi.org/10.1144/jgs2024-235 (2025).

  35. Abdelazeem M, Fathy, M. S. & Khalifa, M. M. Integrating magnetic and stratigraphic data to delineate the subsurface features in and around new Galala City, Northern Galala Plateau, Egypt. NRIAG Journal of Astronomy and Geophysics 8 (1), 131–143 (2019).

    Google Scholar 

  36. Höntzsch, S., Scheibner, C., Kuss, J., Marzouk, A.M. & Rasser, M.W. Tectonically driven carbonate ramp evolution at the Southern Tethyan shelf: the lower eocene succession of the Galala mountains, Egypt. Facies 57, 51–72. https://doi.org/10.1007/s10347-010-0229-x (2010).

    Google Scholar 

  37. Abd-Elhameed, S., Mahmoud, A.A. & Salama, Y. Late Paleocene–Early eocene larger foraminifera from the Galala Plateaus, North Eastern Desert, egypt: biostratigraphic, paleoenvironmental and paleoecological implications. Carbonates and Evaporites 38. https://doi.org/10.1007/s13146-023-00909-2 (2023).

  38. Abd-Elhameed, M., Attia, G., Salama, Y., El-Moghazy, A. & Mahmoud, A. Microfacies analysis and diagenetic history of lower to middle eocene carbonates at Umm Russies area in the Northeastern desert of Egypt. Scientific Reports 15. https://doi.org/10.1038/s41598-025-05365-7 (2025).

  39. Scheibner, C., Marzouk, A. M. & Kuss, J. Shelf architectures of an isolated late cretaceous carbonate platform margin, Galala mountains (Eastern Desert, Egypt). Sedimentary Geology 145, 23–43. https://doi.org/10.1016/s0037-0738(01)00114-2 (2001).

    Google Scholar 

  40. Scheibner, C., Reijmer, J. J. G., Marzouk, A.M., Speijer, R. P. & Kuss, J. From platform to basin: the evolution of a paleocene carbonate margin (Eastern Desert, Egypt). International Journal of Earth Sciences 92, 624–640. https://doi.org/10.1007/s00531-003-0330-2 (2003).

    Google Scholar 

  41. Kuss, J., Scheibner, C. & Gietl, R. Carbonate Platform to Basin Transition along an Upper Cretaceous to Lower Tertiary Syrian Arc Uplift, Galala Plateaus, Eastern Desert of Egypt. GeoArabia 5, 405–424. https://doi.org/10.2113/geoarabia0503405 (2001).

  42. Abdallah A. M., Sharkawi M.A., Marzouk M., 1970. The Campanian rocks of the geology of Mersa Thelmet area, Southern Galala, Plateau, A.R.E. Bull Fac Sci Cairo Univ 44, 271–280.

    Google Scholar 

  43. Kuss, J. & U. Leppig 1989. The Early Tertiary (Middle-Late Paleocene) limestones from the western Gulf of Suez, Egypt. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte 177, 289–332 (1989).

  44. Conoco, C. Geological Map of Egypt 1:500,000. Cairo: The Egyptian General Petroleum Corporation (1987).

    Google Scholar 

  45. El Ayyat, A. M. & Obaidalla, N.A. Stratigraphy, sedimentology, and tectonic evolution of the upper Cretaceous/Paleogene succession in the North Eastern Desert, Egypt. Journal of African Earth Sciences 81, 35–59. https://doi.org/10.1016/j.jafrearsci.2013.01.007 (2013).

    Google Scholar 

  46. Munsell, Soil-color chart, with genuine Munsell color chips. Grand Rapids MI 49512 (2021).

  47. Dunham, R. J. Classification of carbonate rocks according to depositional texture. - A symposium in classification of carbonate rocks, AAPG, Memoir 1: 108–121(1962).

  48. Wilson, J. L. Carbonate facies in geologic history. - Springer, Seventh Printing, 471pp (1986).

  49. Flügel, E. Microfacies of Carbonate Rocks, Analysis, Interpretation and Application. Springer, Berlin, 976p (2004).

    Google Scholar 

  50. Shahar, J. The Syrian Arc system: an overview. Palaeogeogr Palaeoclimatol Palaeoecol 112, 125–142 (1994).

    Google Scholar 

  51. Scheibner, C., Speijer, R. P., Marzouk, A. M. Turnover of larger foraminifera during the Paleocene-Eocene thermal maximum and paleoclimatic control on the evolution of platform ecosystems. Geology 33, 493. https://doi.org/10.1130/g21237.1(2005).

    Google Scholar 

  52. Burchette, T. P. Tectonic control on carbonate platform facies distribution and sequence development: Miocene, Gulf of Suez. Sedimentary Geology 59, 179–204. https://doi.org/10.1016/0037-0738(88)90076-0 (1988).

    Google Scholar 

  53. Hussein, I. M. & Abd-Allah, A. M. A., 2001. Tectonic evolution of the northeastern part of the African continental margin, Egypt. Journal of African Earth Sciences 33, 49–68. https://doi.org/10.1016/s0899-5362(01)90090-9 (2001).

  54. Farouk, S. Upper cretaceous sequence stratigraphy of the Galala Plateaux, Western side of the Gulf of Suez, Egypt. Marine and Petroleum Geology 60, 136–158. https://doi.org/10.1016/j.marpetgeo.2014.11.005 (2015).

    Google Scholar 

  55. Kuss, J., Scheibner, C. & Gietl, R. Carbonate Platform to Basin Transition along an Upper Cretaceous to Lower Tertiary Syrian Arc Uplift, Galala Plateaus, Eastern Desert of Egypt. GeoArabia 5, 405–424. https://doi.org/10.2113/geoarabia0503405 (2000).

  56. Abdallah, A., El-Adindani, A. Note on Cenomanian-Turanian contact in the Galalah plateaus, Eastern Desert, Egypt. Egypt J Geol 7:171–172 (1963).

    Google Scholar 

  57. Omran, A. Geophysical studies on Wadi Araba and Ras Gharib areas, Gulf of Suez, Egypt. Dissertation, Assiut University (1977).

  58. Abdel-Rahman, M., El-Etr, H. Structural pattern of the Northern part of the Eastern desert of Egypt, Apollo-Soyuz test Project, summary science report. In: El-Baz F, Warner D (eds) Vol. II: Earth Observations and Photography. NASA, Washington DC, pp 87–96 (1979).

    Google Scholar 

  59. Moustafa, A.R. Structural setting and tectonic evolution of north Sinai folds, Egypt. In: Homberg C, Bachmann M (eds) Evolution of the Levant Margin and Western Arabia Platform since the Mesozoic. Geological Society of London Special Publication 341, pp 37–63 (2010).

  60. Yousef, M.M., Moustafa, A. R., & Shann, M. Structural setting and tectonic evolution of offshore North Sinai, Egypt. Geological Society Special Publication 341. https://doi.org/10.1144/SP341.4 (2010).

  61. Abd El-Fattah, B. K., Moustafa, A. R., & Yousef, M. A new insight into the structural evolution of Rosetta Fault, Eastern margin of Herodotus Basin, East mediterranean. Marine and Petroleum Geology 105161. https://doi.org/10.1016/j.marpetgeo.2021.105161 (2021).

  62. Bosworth, W., Lučić, D., & Stockli, D. F. North African phanerozoic. In D. Alderton & S. A. Elias (Eds.), Encyclopedia of Geology (2nd edn, pp. 244–258). Oxford: Academic Press. https://doi.org/10.1016/B978-0-12-409548-9.12454-6 (2020).

    Google Scholar 

  63. Moustafa, A. R. Mesozoic-Cenozoic basin evolution in the northern Western Desert of Egypt. In: M. Salem, A. El-Arnauti & A. Saleh (Eds.), 3rd Symposium on the Sedimentary Basins of Libya 3, 29–46 (2008).

  64. Moustafa, A. R. Mesozoic-Cenozoic deformation history of Egypt. Regional Geology Reviews https://doi.org/10.1007/978-3-030-15265-9_7 (2020).

    Google Scholar 

  65. Gietl, R. Biostratigraphie und Sedimentationsmuster einer nordostägyptischen Karbonatrampe (1998).

  66. Pomoni-Papaioannou, F. Facies analysis of lofer cycles (Upper Triassic), in the Argolis Peninsula (Greece). Sedimentary Geology 208, 79–87 (2008).

    Google Scholar 

  67. Davis, Jr., Dalrymple R.W. Principles of Tidal Sedimentology. Springer Dordrecht Heidelberg London New York, 621pp. DOI https://doi.org/10.1007/978-94-007-0123-6 (2012).

  68. Wanas, H. A. Cenomanian rocks in the Sinai Peninsula, Northeast egypt: facies analysis and sequence stratigraphy. Journal of African Earth Sciences, 52: 125–138 (2008).

    Google Scholar 

  69. Mount, J. Mixed siliciclastics and carbonate sediments: a proposed first-order textural and compositional classification. - Sedimentology 32, 435–442 (1985).

    Google Scholar 

  70. Adams, A. E. & Mackenzie, W. S. A colour atlas of carbonate sediments and rocks under the microscope. - Manson Publishing, 180pp (1998).

  71. Middleton, G. V., Church, M. J., Coniglio, M., Hardie, L. A., & Longstaffe, F. J. Encyclopedia of Sediments and Sedimentary Rocks. - Kluwer Academic Publishers; Dordrecht/ Boston/ London: 821pp (2003).

    Google Scholar 

  72. Meshref, W. Tectonic Framework of Egypt. In: Said, R., Ed., Geology of Egypt, Balkema/Rotterdam/Bookfield, Netherlands, 113–156.Moustafa, A.R., Khalil, M.H., 1995. Superposed deformation in the northern Suez rift, Egypt: Relevance to hydrocarbon exploration. Journal Petroleum Geology 18 (3), 2455266 (1990).

  73. Schütz, K.I. Structure and stratigraphy of the Gulf of Suez, Egypt. In: Landon SM (ed) Interior rift basins, AAPG Memoir 59, pp 57–96

  74. Yousef, M.M. Structural setting of central and South egypt: an overview. Micropaleontology 49, 1–13 (1994).

    Google Scholar 

  75. Scheibner, C. & Speijer, R.P. Late Paleocene–early eocene Tethyan carbonate platform evolution — A response to long- and short-term paleoclimatic change. Earth-Science Reviews 90, 71–102. https://doi.org/10.1016/j.earscirev.2008.07.002 (2008).

    Google Scholar 

  76. Bosworth, W., & Tari, G. Hydrocarbon accumulation in basins with multiple phases of extension and inversion: examples from the Western desert (Egypt) and the Western black sea. Solid Earth 12, 59–77. https://doi.org/10.5194/se-12-59-2021 (2021).

    Google Scholar 

  77. Longacre, M., Bentham, P., Hanbal, I., Cotton, J., & Edwards, R. New crustal structure of the Eastern Mediterranean Basin: detailed integration and modeling of gravity, magnetic, seismic refraction, and seismic reflection data. In EGM 2007 International Workshop: Innovation in EM, Grav and Mag Methods: A New Perspective for Exploration, Capri, Italy, 15–18 April 2007,4pp (2007).

Download references

Funding

Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB). Funding Open access funding provided by The Science, Technology & Innovation Funding Authority (STDF) in cooperation with The Egyptian Knowledge Bank (EKB).

Author information

Authors and Affiliations

  1. Geology Department, Faculty of Science, Tanta University, P.O. Box: 31527, Tanta, Egypt

    Mohamed S. Fathy, Mohamed A. Abd El‑Wahed, Mahmoud Faris & Abdallah S. Ali

  2. State Key Laboratory of Continental Evolution and Early Life, Department of Geology, Northwest University, Xi’an, 710069, China

    Mohamed Attia

  3. Geology Department, Faculty of Science, Kafr El Sheikh University, P.O. Box: 33511, Kafr El Sheikh, Egypt

    Mohamed Attia

Authors
  1. Mohamed S. Fathy
    View author publications

    Search author on:PubMed Google Scholar

  2. Mohamed A. Abd El‑Wahed
    View author publications

    Search author on:PubMed Google Scholar

  3. Mahmoud Faris
    View author publications

    Search author on:PubMed Google Scholar

  4. Abdallah S. Ali
    View author publications

    Search author on:PubMed Google Scholar

  5. Mohamed Attia
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Mohamed Sobhy Fathy : Conceptualization, Investigation, Methodology, Data curation, Formal analysis, Supervision, Writing - original draft. Mohamed A. Abd El‑Wahed: Conceptualization, Methodology, Data curation, Formal analysis, Supervision, Writing - original draft. Mahmoud Faris: Methodology, Investigation, Data curation; Writing - original draft. Abdallah Sayed Ali: Methodology, Investigation, Data curation; Writing - original draft. Mohamed Attia: Data curation, Formal analysis, Supervision, Writing - original draft.

Corresponding author

Correspondence to Mohamed A. Abd El‑Wahed.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fathy, M.S., Abd El‑Wahed, M.A., Faris, M. et al. Stratigraphic and structural architecture of the inner ramp carbonates in the Northern Galala Plateau, Egypt: synergizing remote sensing and field data. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35896-6

Download citation

  • Received: 16 September 2025

  • Accepted: 08 January 2026

  • Published: 05 February 2026

  • DOI: https://doi.org/10.1038/s41598-026-35896-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Northern Galala Plateau
  • Inner ramp carbonates
  • Early paleogene
  • Southern Galala formation
  • Egypt
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing