Abstract
Late detection and tumor recurrence are major factors driving the lethality of high-grade serous ovarian carcinoma (HGSOC). PARP inhibitors (PARPi) have achieved significant clinical efficacy by selectively targeting DNA repair deficiencies in HGSOC patients with BRCA mutations and homologous recombination deficiency (HRD). However, a subset of patients ultimately develops resistance to PARPi, necessitating alternative effective treatment options. The mutational signatures of APOBEC3 family of DNA deaminases are widespread across a broad array of cancer types. Here, we report that cancer stem cell (CSC)-like tumorspheres exhibit reduced A3B expression compared to non-CSC adherent counterparts. Importantly, inhibition of A3B leads to PARPi resistance, elevated frequency of CSCs, and enhanced expression of stemness factors. In addition, we found that high A3B-expressing cells are under strong replication stress and thus synergize efficiently with PARPi. These studies reveal the important role A3B plays in regulating PARPi response.
Data availability
The RNA-sequencing dataset used in this study is available at GEO database (GEO309870).
References
Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917. https://doi.org/10.1038/nature03443 (2005).
Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921. https://doi.org/10.1038/nature03445 (2005).
Pujade-Lauraine, E. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 18, 1274–1284. https://doi.org/10.1016/S1470-2045(17)30469-2 (2017).
Poveda, A. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 22, 620–631. https://doi.org/10.1016/S1470-2045(21)00073-5 (2021).
Lee, E. K. & Matulonis, U. A. PARP Inhibitor resistance mechanisms and implications for post-progression combination therapies. Cancers (Basel) https://doi.org/10.3390/cancers12082054 (2020).
Salani, R. et al. Posttreatment surveillance and diagnosis of recurrence in women with gynecologic malignancies: Society of Gynecologic Oncologists recommendations. Am J Obstet Gynecol 204, 466–478. https://doi.org/10.1016/j.ajog.2011.03.008 (2011).
Konstantinopoulos, P. A., Ceccaldi, R., Shapiro, G. I. & D’Andrea, A. D. Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 5, 1137–1154. https://doi.org/10.1158/2159-8290.CD-15-0714 (2015).
Karlan, B. Y., Alvarez, R. D. & Strauss, J. F. 3rd. Evolving paradigms in research and care in ovarian cancers. Obstet Gynecol 128, 771–774. https://doi.org/10.1097/AOG.0000000000001623 (2016).
Kroeger, P. T. Jr. & Drapkin, R. Pathogenesis and heterogeneity of ovarian cancer. Curr Opin Obstet Gynecol 29, 26–34. https://doi.org/10.1097/GCO.0000000000000340 (2017).
Kipps, E., Tan, D. S. & Kaye, S. B. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 13, 273–282. https://doi.org/10.1038/nrc3432 (2013).
Auersperg, N. Ovarian surface epithelium as a source of ovarian cancers: unwarranted speculation or evidence-based hypothesis?. Gynecol Oncol 130, 246–251. https://doi.org/10.1016/j.ygyno.2013.03.021 (2013).
Bowtell, D. D. et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 15, 668–679. https://doi.org/10.1038/nrc4019 (2015).
Ushijima, K. Treatment for recurrent ovarian cancer-at first relapse. J Oncol 2010, 497429. https://doi.org/10.1155/2010/497429 (2010).
Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68, 4311–4320. https://doi.org/10.1158/0008-5472.CAN-08-0364 (2008).
Polyak, K. & Hahn, W. C. Roots and stems: stem cells in cancer. Nat. Med. 12, 296–300. https://doi.org/10.1038/nm1379 (2006).
Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134. https://doi.org/10.1038/nm.4409 (2017).
Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421. https://doi.org/10.1038/nature12477 (2013).
Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat Genet 47, 1402–1407. https://doi.org/10.1038/ng.3441 (2015).
Petljak, M. et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 607, 799–807. https://doi.org/10.1038/s41586-022-04972-y (2022).
Senkin, S. et al. Geographic variation of mutagenic exposures in kidney cancer genomes. Nature 629, 910–918. https://doi.org/10.1038/s41586-024-07368-2 (2024).
Diaz-Gay, M. et al. The mutagenic forces shaping the genomes of lung cancer in never smokers. Nature 644, 133–144. https://doi.org/10.1038/s41586-025-09219-0 (2025).
Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45, 970–976. https://doi.org/10.1038/ng.2702 (2013).
Harris, R. S. & Anderson, B. D. Evolutionary paradigms from ancient and ongoing conflicts between the lentiviral vif protein and mammalian APOBEC3 enzymes. PLoS Pathog 12, e1005958. https://doi.org/10.1371/journal.ppat.1005958 (2016).
Wissing, S., Montano, M., Garcia-Perez, J. L., Moran, J. V. & Greene, W. C. Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells. J Biol Chem 286, 36427–36437. https://doi.org/10.1074/jbc.M111.251058 (2011).
Durfee, C. et al. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep Med 4, 101211. https://doi.org/10.1016/j.xcrm.2023.101211 (2023).
Law, E. K. et al. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med https://doi.org/10.1084/jem.20200261 (2020).
Consortium & I.T.P.-C.A.o.W.G,. Pan-cancer analysis of whole genomes. Nature 578, 82–93. https://doi.org/10.1038/s41586-020-1969-6 (2020).
Leonard, B. et al. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res 73, 7222–7231. https://doi.org/10.1158/0008-5472.CAN-13-1753 (2013).
Ruder, U. et al. APOBEC3B protein expression and mRNA analyses in patients with high-grade serous ovarian carcinoma. Histol Histopathol 34, 405–417 (2019).
Law, E. K. et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci Adv 2, e1601737. https://doi.org/10.1126/sciadv.1601737 (2016).
Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov 5, 704–712. https://doi.org/10.1158/2159-8290.CD-15-0344 (2015).
Mas-Ponte, D. & Supek, F. DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat Genet 52, 958–968. https://doi.org/10.1038/s41588-020-0674-6 (2020).
Taylor, B. J. et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife 2, e00534. https://doi.org/10.7554/eLife.00534 (2013).
Landry, S., Narvaiza, I., Linfesty, D. C. & Weitzman, M. D. APOBEC3A can activate the DNA damage response and cause cell-cycle arrest. EMBO Rep 12, 444–450. https://doi.org/10.1038/embor.2011.46 (2011).
Green, A. M. et al. APOBEC3A damages the cellular genome during DNA replication. Cell Cycle 15, 998–1008. https://doi.org/10.1080/15384101.2016.1152426 (2016).
Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370. https://doi.org/10.1038/nature11881 (2013).
Conner, K. L. et al. APOBEC3 enzymes mediate efficacy of cisplatin and are epistatic with base excision repair and mismatch repair in platinum response. NAR Cancer 2, zcaa033 (2020).
Buisson, R., Lawrence, M. S., Benes, C. H. & Zou, L. APOBEC3A and APOBEC3B activities render cancer cells susceptible to ATR inhibition. Cancer Res 77, 4567–4578. https://doi.org/10.1158/0008-5472.CAN-16-3389 (2017).
Izar, B. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26, 1271–1279. https://doi.org/10.1038/s41591-020-0926-0 (2020).
Shah, M. M. & Landen, C. N. Ovarian cancer stem cells: are they real and why are they important?. Gynecol Oncol 132, 483–489. https://doi.org/10.1016/j.ygyno.2013.12.001 (2014).
Robinson, M. et al. Characterization of SOX2, OCT4 and NANOG in Ovarian Cancer Tumor-Initiating Cells. Cancers (Basel) 13, 4. https://doi.org/10.3390/cancers13020262 (2021).
Wen, Y., Hou, Y., Huang, Z., Cai, J. & Wang, Z. SOX2 is required to maintain cancer stem cells in ovarian cancer. Cancer Sci 108, 719–731. https://doi.org/10.1111/cas.13186 (2017).
Isozaki, H. et al. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature 620, 393–401. https://doi.org/10.1038/s41586-023-06303-1 (2023).
Niida, H., Katsuno, Y., Banerjee, B., Hande, M. P. & Nakanishi, M. Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 27, 2572–2581. https://doi.org/10.1128/MCB.01611-06 (2007).
Smith, J., Tho, L. M., Xu, N. & Gillespie, D. A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108, 73–112. https://doi.org/10.1016/B978-0-12-380888-2.00003-0 (2010).
Squatrito, M. et al. Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18, 619–629. https://doi.org/10.1016/j.ccr.2010.10.034 (2010).
Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1–9. https://doi.org/10.1038/ncb3452 (2016).
Li, H. et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer 19, 107. https://doi.org/10.1186/s12943-020-01227-0 (2020).
Kim, H. et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun 11, 3726. https://doi.org/10.1038/s41467-020-17127-2 (2020).
Hirabayashi, S. et al. APOBEC3B is preferentially expressed at the G2/M phase of cell cycle. Biochem Biophys Res Commun 546, 178–184. https://doi.org/10.1016/j.bbrc.2021.02.008 (2021).
Strom, C. E. et al. Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res 39, 3166–3175. https://doi.org/10.1093/nar/gkq1241 (2011).
Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18, 610–621. https://doi.org/10.1038/nrm.2017.53 (2017).
Petljak, M. & Maciejowski, J. Molecular origins of APOBEC-associated mutations in cancer. DNA Repair (Amst) 94, 102905. https://doi.org/10.1016/j.dnarep.2020.102905 (2020).
Shimizu, A. et al. Onset of deaminase APOBEC3B induction in response to DNA double-strand breaks. Biochem Biophys Rep 16, 115–121. https://doi.org/10.1016/j.bbrep.2018.10.010 (2018).
Serebrenik, A. A. et al. The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 116, 22158–22163. https://doi.org/10.1073/pnas.1904024116 (2019).
Jiang, Q. et al. Inflammation-driven deaminase deregulation fuels human pre-leukemia stem cell evolution. Cell Rep 34, 108670. https://doi.org/10.1016/j.celrep.2020.108670 (2021).
Roelofs, P. A., Martens, J. W. M., Harris, R. S. & Span, P. N. Clinical implications of APOBEC3-mediated mutagenesis in breast cancer. Clin Cancer Res 29, 1658–1669. https://doi.org/10.1158/1078-0432.CCR-22-2861 (2023).
Jiang, Q. et al. Hyper-editing of cell-cycle regulatory and tumor suppressor rna promotes malignant progenitor propagation. Cancer Cell 35(81–94), e87. https://doi.org/10.1016/j.ccell.2018.11.017 (2019).
Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560 (2018).
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34, 525–527. https://doi.org/10.1038/nbt.3519 (2016).
Xin, J. et al. High-performance web services for querying gene and variant annotation. Genome Biol 17, 91. https://doi.org/10.1186/s13059-016-0953-9 (2016).
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47. https://doi.org/10.1093/nar/gkv007 (2015).
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550. https://doi.org/10.1073/pnas.0506580102 (2005).
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res 53, D672–D677. https://doi.org/10.1093/nar/gkae909 (2025).
Acknowledgements
This work was supported by NIH/NCI 1R03CA270853, 1R01CA282792, and 1R03CA287274 (Q. Jiang); the JM Foundation (Q. Jiang); the Curebound Foundation (Q. Jiang); the Leukemia Research Foundation (Q. Jiang); the UCSD Senate Grants (2021 and 2022, Q. Jiang); the Sanford Stem Cell Institution (Q. Jiang); Pivot Pilot Grant (Q. Jiang), The Swedish Childhood Cancer Foundation (Barncancerfonden) TJ2014-0024 (F. Holm). L.A.C. is a Scholar of Blood Cancer United and is supported in part by NIH/NCI R37CA252040, NIH/NCI P30CA023100, and funding from the UC San Diego Sanford Stem Cell Institute. The authors wish to thank Jane Isquith for scientific discussion, the UCSD Institute for Genomic Medicine and the UCSD Center for Computational Biology & Bioinformatics (CTSA grant, UM1 TR005449) for Library Construction, Sequencing and Bioinformatics analyses. IGM Genomics Center, University of California, San Diego, La Jolla, CA, which is supported by NIH/NCI P30CA023100. This publication includes data generated at the IGM Genomics Center utilizing Illumina NovaSeq X Plus or 6000 instruments purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929). Flow cytometry data were collected at the UCSD Moores Cancer Center flow cytometry facility, which obtained a BD FACSymphony S6 through support from the NIH (S10OD032316).
Author information
Authors and Affiliations
Contributions
Q.J., R.N.E., L.A.C., K.M.F., and F.H, designed the study and prepared the manuscript. C.L., M.R., L.L., H.Z., Q.J.Z, S.E., and Q.J. performed experiments and data analysis. K.M.F., R.S., S.E., and H.Z. performed the computational analysis.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Rivera, M., Liu, L., Enlund, S. et al. APOBEC3B enhances the efficacy of PARP inhibitors in elimination of ovarian cancer stem cell. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35939-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-35939-y