Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
APOBEC3B enhances the efficacy of PARP inhibitors in elimination of ovarian cancer stem cell
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 January 2026

APOBEC3B enhances the efficacy of PARP inhibitors in elimination of ovarian cancer stem cell

  • Maria Rivera1,2,3,
  • Lucy Liu1,2,3,
  • Sabina Enlund4,
  • Chae-Eun Lim1,2,3,
  • Haoran Zhang1,2,3,
  • Kaifu Yang1,2,
  • Roman Sasik5,
  • Leslie A. Crews1,2,3,
  • Kathleen M. Fisch5,6,
  • Ramez N. Eskander7,
  • Frida Holm8 &
  • …
  • Qingfei Jiang1,2,3 

Scientific Reports , Article number:  (2026) Cite this article

  • 696 Accesses

  • 5 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Cancer stem cells
  • DNA damage and repair
  • DNA replication

Abstract

Late detection and tumor recurrence are major factors driving the lethality of high-grade serous ovarian carcinoma (HGSOC). PARP inhibitors (PARPi) have achieved significant clinical efficacy by selectively targeting DNA repair deficiencies in HGSOC patients with BRCA mutations and homologous recombination deficiency (HRD). However, a subset of patients ultimately develops resistance to PARPi, necessitating alternative effective treatment options. The mutational signatures of APOBEC3 family of DNA deaminases are widespread across a broad array of cancer types. Here, we report that cancer stem cell (CSC)-like tumorspheres exhibit reduced A3B expression compared to non-CSC adherent counterparts. Importantly, inhibition of A3B leads to PARPi resistance, elevated frequency of CSCs, and enhanced expression of stemness factors. In addition, we found that high A3B-expressing cells are under strong replication stress and thus synergize efficiently with PARPi. These studies reveal the important role A3B plays in regulating PARPi response.

Data availability

The RNA-sequencing dataset used in this study is available at GEO database (GEO309870).

References

  1. Bryant, H. E. et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature 434, 913–917. https://doi.org/10.1038/nature03443 (2005).

    Google Scholar 

  2. Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917–921. https://doi.org/10.1038/nature03445 (2005).

    Google Scholar 

  3. Pujade-Lauraine, E. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive, relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 18, 1274–1284. https://doi.org/10.1016/S1470-2045(17)30469-2 (2017).

    Google Scholar 

  4. Poveda, A. et al. Olaparib tablets as maintenance therapy in patients with platinum-sensitive relapsed ovarian cancer and a BRCA1/2 mutation (SOLO2/ENGOT-Ov21): a final analysis of a double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol 22, 620–631. https://doi.org/10.1016/S1470-2045(21)00073-5 (2021).

    Google Scholar 

  5. Lee, E. K. & Matulonis, U. A. PARP Inhibitor resistance mechanisms and implications for post-progression combination therapies. Cancers (Basel) https://doi.org/10.3390/cancers12082054 (2020).

    Google Scholar 

  6. Salani, R. et al. Posttreatment surveillance and diagnosis of recurrence in women with gynecologic malignancies: Society of Gynecologic Oncologists recommendations. Am J Obstet Gynecol 204, 466–478. https://doi.org/10.1016/j.ajog.2011.03.008 (2011).

    Google Scholar 

  7. Konstantinopoulos, P. A., Ceccaldi, R., Shapiro, G. I. & D’Andrea, A. D. Homologous recombination deficiency: Exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov 5, 1137–1154. https://doi.org/10.1158/2159-8290.CD-15-0714 (2015).

    Google Scholar 

  8. Karlan, B. Y., Alvarez, R. D. & Strauss, J. F. 3rd. Evolving paradigms in research and care in ovarian cancers. Obstet Gynecol 128, 771–774. https://doi.org/10.1097/AOG.0000000000001623 (2016).

    Google Scholar 

  9. Kroeger, P. T. Jr. & Drapkin, R. Pathogenesis and heterogeneity of ovarian cancer. Curr Opin Obstet Gynecol 29, 26–34. https://doi.org/10.1097/GCO.0000000000000340 (2017).

    Google Scholar 

  10. Kipps, E., Tan, D. S. & Kaye, S. B. Meeting the challenge of ascites in ovarian cancer: new avenues for therapy and research. Nat Rev Cancer 13, 273–282. https://doi.org/10.1038/nrc3432 (2013).

    Google Scholar 

  11. Auersperg, N. Ovarian surface epithelium as a source of ovarian cancers: unwarranted speculation or evidence-based hypothesis?. Gynecol Oncol 130, 246–251. https://doi.org/10.1016/j.ygyno.2013.03.021 (2013).

    Google Scholar 

  12. Bowtell, D. D. et al. Rethinking ovarian cancer II: reducing mortality from high-grade serous ovarian cancer. Nat Rev Cancer 15, 668–679. https://doi.org/10.1038/nrc4019 (2015).

    Google Scholar 

  13. Ushijima, K. Treatment for recurrent ovarian cancer-at first relapse. J Oncol 2010, 497429. https://doi.org/10.1155/2010/497429 (2010).

    Google Scholar 

  14. Zhang, S. et al. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res 68, 4311–4320. https://doi.org/10.1158/0008-5472.CAN-08-0364 (2008).

    Google Scholar 

  15. Polyak, K. & Hahn, W. C. Roots and stems: stem cells in cancer. Nat. Med. 12, 296–300. https://doi.org/10.1038/nm1379 (2006).

    Google Scholar 

  16. Batlle, E. & Clevers, H. Cancer stem cells revisited. Nat. Med. 23, 1124–1134. https://doi.org/10.1038/nm.4409 (2017).

    Google Scholar 

  17. Alexandrov, L. B. et al. Signatures of mutational processes in human cancer. Nature 500, 415–421. https://doi.org/10.1038/nature12477 (2013).

    Google Scholar 

  18. Alexandrov, L. B. et al. Clock-like mutational processes in human somatic cells. Nat Genet 47, 1402–1407. https://doi.org/10.1038/ng.3441 (2015).

    Google Scholar 

  19. Petljak, M. et al. Mechanisms of APOBEC3 mutagenesis in human cancer cells. Nature 607, 799–807. https://doi.org/10.1038/s41586-022-04972-y (2022).

    Google Scholar 

  20. Senkin, S. et al. Geographic variation of mutagenic exposures in kidney cancer genomes. Nature 629, 910–918. https://doi.org/10.1038/s41586-024-07368-2 (2024).

    Google Scholar 

  21. Diaz-Gay, M. et al. The mutagenic forces shaping the genomes of lung cancer in never smokers. Nature 644, 133–144. https://doi.org/10.1038/s41586-025-09219-0 (2025).

    Google Scholar 

  22. Roberts, S. A. et al. An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45, 970–976. https://doi.org/10.1038/ng.2702 (2013).

    Google Scholar 

  23. Harris, R. S. & Anderson, B. D. Evolutionary paradigms from ancient and ongoing conflicts between the lentiviral vif protein and mammalian APOBEC3 enzymes. PLoS Pathog 12, e1005958. https://doi.org/10.1371/journal.ppat.1005958 (2016).

    Google Scholar 

  24. Wissing, S., Montano, M., Garcia-Perez, J. L., Moran, J. V. & Greene, W. C. Endogenous APOBEC3B restricts LINE-1 retrotransposition in transformed cells and human embryonic stem cells. J Biol Chem 286, 36427–36437. https://doi.org/10.1074/jbc.M111.251058 (2011).

    Google Scholar 

  25. Durfee, C. et al. Human APOBEC3B promotes tumor development in vivo including signature mutations and metastases. Cell Rep Med 4, 101211. https://doi.org/10.1016/j.xcrm.2023.101211 (2023).

    Google Scholar 

  26. Law, E. K. et al. APOBEC3A catalyzes mutation and drives carcinogenesis in vivo. J Exp Med https://doi.org/10.1084/jem.20200261 (2020).

    Google Scholar 

  27. Consortium & I.T.P.-C.A.o.W.G,. Pan-cancer analysis of whole genomes. Nature 578, 82–93. https://doi.org/10.1038/s41586-020-1969-6 (2020).

    Google Scholar 

  28. Leonard, B. et al. APOBEC3B upregulation and genomic mutation patterns in serous ovarian carcinoma. Cancer Res 73, 7222–7231. https://doi.org/10.1158/0008-5472.CAN-13-1753 (2013).

    Google Scholar 

  29. Ruder, U. et al. APOBEC3B protein expression and mRNA analyses in patients with high-grade serous ovarian carcinoma. Histol Histopathol 34, 405–417 (2019).

    Google Scholar 

  30. Law, E. K. et al. The DNA cytosine deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast cancer. Sci Adv 2, e1601737. https://doi.org/10.1126/sciadv.1601737 (2016).

    Google Scholar 

  31. Swanton, C., McGranahan, N., Starrett, G. J. & Harris, R. S. APOBEC enzymes: mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov 5, 704–712. https://doi.org/10.1158/2159-8290.CD-15-0344 (2015).

    Google Scholar 

  32. Mas-Ponte, D. & Supek, F. DNA mismatch repair promotes APOBEC3-mediated diffuse hypermutation in human cancers. Nat Genet 52, 958–968. https://doi.org/10.1038/s41588-020-0674-6 (2020).

    Google Scholar 

  33. Taylor, B. J. et al. DNA deaminases induce break-associated mutation showers with implication of APOBEC3B and 3A in breast cancer kataegis. Elife 2, e00534. https://doi.org/10.7554/eLife.00534 (2013).

    Google Scholar 

  34. Landry, S., Narvaiza, I., Linfesty, D. C. & Weitzman, M. D. APOBEC3A can activate the DNA damage response and cause cell-cycle arrest. EMBO Rep 12, 444–450. https://doi.org/10.1038/embor.2011.46 (2011).

    Google Scholar 

  35. Green, A. M. et al. APOBEC3A damages the cellular genome during DNA replication. Cell Cycle 15, 998–1008. https://doi.org/10.1080/15384101.2016.1152426 (2016).

    Google Scholar 

  36. Burns, M. B. et al. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature 494, 366–370. https://doi.org/10.1038/nature11881 (2013).

    Google Scholar 

  37. Conner, K. L. et al. APOBEC3 enzymes mediate efficacy of cisplatin and are epistatic with base excision repair and mismatch repair in platinum response. NAR Cancer 2, zcaa033 (2020).

    Google Scholar 

  38. Buisson, R., Lawrence, M. S., Benes, C. H. & Zou, L. APOBEC3A and APOBEC3B activities render cancer cells susceptible to ATR inhibition. Cancer Res 77, 4567–4578. https://doi.org/10.1158/0008-5472.CAN-16-3389 (2017).

    Google Scholar 

  39. Izar, B. et al. A single-cell landscape of high-grade serous ovarian cancer. Nat. Med. 26, 1271–1279. https://doi.org/10.1038/s41591-020-0926-0 (2020).

    Google Scholar 

  40. Shah, M. M. & Landen, C. N. Ovarian cancer stem cells: are they real and why are they important?. Gynecol Oncol 132, 483–489. https://doi.org/10.1016/j.ygyno.2013.12.001 (2014).

    Google Scholar 

  41. Robinson, M. et al. Characterization of SOX2, OCT4 and NANOG in Ovarian Cancer Tumor-Initiating Cells. Cancers (Basel) 13, 4. https://doi.org/10.3390/cancers13020262 (2021).

    Google Scholar 

  42. Wen, Y., Hou, Y., Huang, Z., Cai, J. & Wang, Z. SOX2 is required to maintain cancer stem cells in ovarian cancer. Cancer Sci 108, 719–731. https://doi.org/10.1111/cas.13186 (2017).

    Google Scholar 

  43. Isozaki, H. et al. Therapy-induced APOBEC3A drives evolution of persistent cancer cells. Nature 620, 393–401. https://doi.org/10.1038/s41586-023-06303-1 (2023).

    Google Scholar 

  44. Niida, H., Katsuno, Y., Banerjee, B., Hande, M. P. & Nakanishi, M. Specific role of Chk1 phosphorylations in cell survival and checkpoint activation. Mol Cell Biol 27, 2572–2581. https://doi.org/10.1128/MCB.01611-06 (2007).

    Google Scholar 

  45. Smith, J., Tho, L. M., Xu, N. & Gillespie, D. A. The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res 108, 73–112. https://doi.org/10.1016/B978-0-12-380888-2.00003-0 (2010).

    Google Scholar 

  46. Squatrito, M. et al. Loss of ATM/Chk2/p53 pathway components accelerates tumor development and contributes to radiation resistance in gliomas. Cancer Cell 18, 619–629. https://doi.org/10.1016/j.ccr.2010.10.034 (2010).

    Google Scholar 

  47. Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1–9. https://doi.org/10.1038/ncb3452 (2016).

    Google Scholar 

  48. Li, H. et al. PARP inhibitor resistance: the underlying mechanisms and clinical implications. Mol Cancer 19, 107. https://doi.org/10.1186/s12943-020-01227-0 (2020).

    Google Scholar 

  49. Kim, H. et al. Combining PARP with ATR inhibition overcomes PARP inhibitor and platinum resistance in ovarian cancer models. Nat Commun 11, 3726. https://doi.org/10.1038/s41467-020-17127-2 (2020).

    Google Scholar 

  50. Hirabayashi, S. et al. APOBEC3B is preferentially expressed at the G2/M phase of cell cycle. Biochem Biophys Res Commun 546, 178–184. https://doi.org/10.1016/j.bbrc.2021.02.008 (2021).

    Google Scholar 

  51. Strom, C. E. et al. Poly (ADP-ribose) polymerase (PARP) is not involved in base excision repair but PARP inhibition traps a single-strand intermediate. Nucleic Acids Res 39, 3166–3175. https://doi.org/10.1093/nar/gkq1241 (2011).

    Google Scholar 

  52. Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat Rev Mol Cell Biol 18, 610–621. https://doi.org/10.1038/nrm.2017.53 (2017).

    Google Scholar 

  53. Petljak, M. & Maciejowski, J. Molecular origins of APOBEC-associated mutations in cancer. DNA Repair (Amst) 94, 102905. https://doi.org/10.1016/j.dnarep.2020.102905 (2020).

    Google Scholar 

  54. Shimizu, A. et al. Onset of deaminase APOBEC3B induction in response to DNA double-strand breaks. Biochem Biophys Rep 16, 115–121. https://doi.org/10.1016/j.bbrep.2018.10.010 (2018).

    Google Scholar 

  55. Serebrenik, A. A. et al. The deaminase APOBEC3B triggers the death of cells lacking uracil DNA glycosylase. Proc. Natl. Acad. Sci. U.S.A. 116, 22158–22163. https://doi.org/10.1073/pnas.1904024116 (2019).

    Google Scholar 

  56. Jiang, Q. et al. Inflammation-driven deaminase deregulation fuels human pre-leukemia stem cell evolution. Cell Rep 34, 108670. https://doi.org/10.1016/j.celrep.2020.108670 (2021).

    Google Scholar 

  57. Roelofs, P. A., Martens, J. W. M., Harris, R. S. & Span, P. N. Clinical implications of APOBEC3-mediated mutagenesis in breast cancer. Clin Cancer Res 29, 1658–1669. https://doi.org/10.1158/1078-0432.CCR-22-2861 (2023).

    Google Scholar 

  58. Jiang, Q. et al. Hyper-editing of cell-cycle regulatory and tumor suppressor rna promotes malignant progenitor propagation. Cancer Cell 35(81–94), e87. https://doi.org/10.1016/j.ccell.2018.11.017 (2019).

    Google Scholar 

  59. Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890. https://doi.org/10.1093/bioinformatics/bty560 (2018).

    Google Scholar 

  60. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34, 525–527. https://doi.org/10.1038/nbt.3519 (2016).

    Google Scholar 

  61. Xin, J. et al. High-performance web services for querying gene and variant annotation. Genome Biol 17, 91. https://doi.org/10.1186/s13059-016-0953-9 (2016).

    Google Scholar 

  62. Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43, e47. https://doi.org/10.1093/nar/gkv007 (2015).

    Google Scholar 

  63. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U.S.A. 102, 15545–15550. https://doi.org/10.1073/pnas.0506580102 (2005).

    Google Scholar 

  64. Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    Google Scholar 

  65. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).

    Google Scholar 

  66. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: biological systems database as a model of the real world. Nucleic Acids Res 53, D672–D677. https://doi.org/10.1093/nar/gkae909 (2025).

    Google Scholar 

Download references

Acknowledgements

This work was supported by NIH/NCI 1R03CA270853, 1R01CA282792, and 1R03CA287274 (Q. Jiang); the JM Foundation (Q. Jiang); the Curebound Foundation (Q. Jiang); the Leukemia Research Foundation (Q. Jiang); the UCSD Senate Grants (2021 and 2022, Q. Jiang); the Sanford Stem Cell Institution (Q. Jiang); Pivot Pilot Grant (Q. Jiang), The Swedish Childhood Cancer Foundation (Barncancerfonden) TJ2014-0024 (F. Holm). L.A.C. is a Scholar of Blood Cancer United and is supported in part by NIH/NCI R37CA252040, NIH/NCI P30CA023100, and funding from the UC San Diego Sanford Stem Cell Institute. The authors wish to thank Jane Isquith for scientific discussion, the UCSD Institute for Genomic Medicine and the UCSD Center for Computational Biology & Bioinformatics (CTSA grant, UM1 TR005449) for Library Construction, Sequencing and Bioinformatics analyses. IGM Genomics Center, University of California, San Diego, La Jolla, CA, which is supported by NIH/NCI P30CA023100. This publication includes data generated at the IGM Genomics Center utilizing Illumina NovaSeq X Plus or 6000 instruments purchased with funding from a National Institutes of Health SIG grant (#S10 OD026929). Flow cytometry data were collected at the UCSD Moores Cancer Center flow cytometry facility, which obtained a BD FACSymphony S6 through support from the NIH (S10OD032316).

Author information

Authors and Affiliations

  1. Division of Regenerative Medicine, Department of Medicine, University of California, La Jolla, San Diego, CA, USA

    Maria Rivera, Lucy Liu, Chae-Eun Lim, Haoran Zhang, Kaifu Yang, Leslie A. Crews & Qingfei Jiang

  2. Moores Cancer Center, La Jolla, San Diego, CA, 92037, USA

    Maria Rivera, Lucy Liu, Chae-Eun Lim, Haoran Zhang, Kaifu Yang, Leslie A. Crews & Qingfei Jiang

  3. Sanford Stem Cell Institute, University of California, La Jolla, San Diego, CA, USA

    Maria Rivera, Lucy Liu, Chae-Eun Lim, Haoran Zhang, Leslie A. Crews & Qingfei Jiang

  4. Division of Pediatric Oncology and Surgery, Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden

    Sabina Enlund

  5. Center for Computational Biology & Bioinformatics (CCBB), University of California, La Jolla, San Diego, CA, 92093-0681, USA

    Roman Sasik & Kathleen M. Fisch

  6. Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, La Jolla, San Diego, CA, USA

    Kathleen M. Fisch

  7. Division of Gynecologic Oncology, Department of Obstetrics, Gynecology & Reproductive Sciences, Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA

    Ramez N. Eskander

  8. Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden

    Frida Holm

Authors
  1. Maria Rivera
    View author publications

    Search author on:PubMed Google Scholar

  2. Lucy Liu
    View author publications

    Search author on:PubMed Google Scholar

  3. Sabina Enlund
    View author publications

    Search author on:PubMed Google Scholar

  4. Chae-Eun Lim
    View author publications

    Search author on:PubMed Google Scholar

  5. Haoran Zhang
    View author publications

    Search author on:PubMed Google Scholar

  6. Kaifu Yang
    View author publications

    Search author on:PubMed Google Scholar

  7. Roman Sasik
    View author publications

    Search author on:PubMed Google Scholar

  8. Leslie A. Crews
    View author publications

    Search author on:PubMed Google Scholar

  9. Kathleen M. Fisch
    View author publications

    Search author on:PubMed Google Scholar

  10. Ramez N. Eskander
    View author publications

    Search author on:PubMed Google Scholar

  11. Frida Holm
    View author publications

    Search author on:PubMed Google Scholar

  12. Qingfei Jiang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Q.J., R.N.E., L.A.C., K.M.F., and F.H, designed the study and prepared the manuscript. C.L., M.R., L.L., H.Z., Q.J.Z, S.E., and Q.J. performed experiments and data analysis. K.M.F., R.S., S.E., and H.Z. performed the computational analysis.

Corresponding author

Correspondence to Qingfei Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information 1.

Supplementary Information 2.

Supplementary Information 3.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera, M., Liu, L., Enlund, S. et al. APOBEC3B enhances the efficacy of PARP inhibitors in elimination of ovarian cancer stem cell. Sci Rep (2026). https://doi.org/10.1038/s41598-026-35939-y

Download citation

  • Received: 30 April 2025

  • Accepted: 08 January 2026

  • Published: 14 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-35939-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer