Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Intestinal microbiome interactions influence Metarhizium-based biocontrol efficacy against the sugar beet weevil
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 January 2026

Intestinal microbiome interactions influence Metarhizium-based biocontrol efficacy against the sugar beet weevil

  • Daniela Wöber1,2,
  • Matthias Wernicke3,
  • Francisco Cerqueira1,
  • Katharina Wechselberger3,
  • Karin Hansel-Hohl1,
  • Stephan Manhalter3 &
  • …
  • Eva M. Molin1 

Scientific Reports , Article number:  (2026) Cite this article

  • 701 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Microbiology
  • Zoology

Abstract

The sugar beet weevil is considered one of the most economically important insect pests in sugar beet cultivation. A promising biological control strategy involves the natural interaction between entomopathogenic fungi and arthropods. The successful application of M. brunneum as part of integrated biological control strategies against the sugar beet weevil has already been demonstrated resulting in lethal mycosis. However, the efficacy of this strain is affected by multiple factors. The intestinal microbiome of insects harbours beneficial microbes that possess various functions, such as defence mechanisms against insect-pathogens. Thus, investigating intestinal microbial interactions in combination with Metarhizium-application could reveal microbes that modulate susceptibility to pathogens. This study investigated whether intestinal microbial interactions influence mycosis caused by M. brunneum and M. robertsii. We analysed the intestinal microbiome of both treated and untreated sugar beet weevils, distinguishing between mycotic and non-mycotic individuals at the time of death. Notably, Pantoea and Enterobacter were significantly associated with mycotic individuals and may act as a potential antagonist to Metarhizium. In contrast, healthy individuals harboured diverse microbial communities that may provide a protective barrier against entomopathogens. However, the intestinal microbiome of non-mycotic specimens also comprised genera with presumed insecticidal properties, including Serratia, Penicillium and Cladosporium. The last two were also observed in the intestines of male individuals, which were generally at a higher risk of mortality. Further investigation is needed to confirm their insecticidal potential in the sugar beet weevil. A combined application could improve the efficacy of Metarhizium-based biocontrol, contributing to more sustainable pest management strategies.

Similar content being viewed by others

Distinct assembly processes of intestinal and non-intestinal microbes of bark beetles from clues of metagenomic insights

Article Open access 06 March 2025

Wolbachia dominance influences the Culex quinquefasciatus microbiota

Article Open access 03 November 2023

Antibiotic treatment of honey bee colonies alters early gut microbiome assembly and induces persistent dysbiosis in newly emerged workers

Article Open access 08 August 2025

Data availability

The sequence data is available at NCBI and can be accessed with the BioProject accession number PRJNA1330021 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA1330021).

References

  1. Chen, S., Zhang, C., Liu, J., Ni, H. & Wu, Z. Current status and prospects of the global sugar beet industry. Sugar Tech. 26, 1199–1207 (2024).

    Google Scholar 

  2. Oerke, E. C. & Dehne, H. W. Safeguarding production—losses in major crops and the role of crop protection. Crop Prot. 23, 275–285 (2004).

    Google Scholar 

  3. EPPO Global Database. Asproparthenis punctiventris (CLEOPU). https://gd.eppo.int/taxon/CLEOPU/distribution (2025).

  4. Tielecke Biologie, Epidemiologie und Bekämpfung des Rübenderbrüßlers (Bothynoderes punctiventris Germ.). 2 (1952).

  5. Drmić, Z. The sugar-beet Weevil (Bothynoderes Punctiventris Germar 1824., Col.: Curculionidae): Life cycle, Ecology and Area Wide Control by Mass Trapping (Agronomski fakultet, 2016).

  6. Viric Gasparic, H., Lemic, D., Drmic, Z., Cacija, M. & Bazok, R. The efficacy of seed treatments on major sugar beet pests: possible consequences of the recent neonicotinoid ban. Agronomy 11, 1277 (2021).

    Google Scholar 

  7. Harvey, J. A. et al. Scientists’ warning on climate change and insects. Ecol. Monogr. 93, e1553 (2023).

    Google Scholar 

  8. Maienfisch, P., Brandl, F., Kobel, W., Rindlisbacher, A. & Senn, R. CGA 293’343: A Novel, Broad-Spectrum neonicotinoid insecticide. in Nicotinoid Insecticides and the Nicotinic Acetylcholine Receptor (eds Yamamoto, I. & Casida, J. E.) 177–209 (Springer Japan, Tokyo, doi:https://doi.org/10.1007/978-4-431-67933-2_8. (1999).

    Google Scholar 

  9. Health, E. U. and Food Safety. Neonicotinoids. (2023).

  10. Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future. jip https://doi.org/10.1016/j.jip.2015.07.009 (2015).

  11. Mantzoukas, S., Kitsiou, F., Natsiopoulos, D. & Eliopoulos, P. A. Entomopathogenic fungi: interactions and applications. Encyclopedia 2, 646–656 (2022).

    Google Scholar 

  12. Wang, Y., Han, L., Xia, Y. & Xie, J. The entomopathogenic fungus metarhizium anisopliae affects feeding preference of Sogatella furcifera and its potential targets’ identification. JoF 8, 506 (2022).

    Google Scholar 

  13. Khoja, S. et al. Volatiles of the entomopathogenic fungus, metarhizium brunneum, attract and kill plant parasitic nematodes. Biol. Control. 152, 104472 (2021).

    Google Scholar 

  14. Bai, J. et al. Analysis of intestinal microbial diversity of four species of grasshoppers and determination of cellulose digestibility. Insects 13, 432 (2022).

    Google Scholar 

  15. Zottele, M. et al. Integrated Biological Control of the Sugar Beet Weevil Asproparthenis punctiventris with the Fungus Metarhizium brunneum: New Application Approaches. Pathogens 12, 99 (2023).

  16. Ahmad, I., Jiménez-Gasco, M. D. M., Luthe, D. S., Shakeel, S. N. & Barbercheck, M. E. Endophytic metarhizium Robertsii promotes maize growth, suppresses insect growth, and alters plant defense gene expression. Biol. Control. 144, 104167 (2020).

    Google Scholar 

  17. Islam, W., Noman, A., Naveed, H., Huang, Z. & Chen, H. Y. H. Role of environmental factors in shaping the soil Microbiome. Environ. Sci. Pollut Res. 27, 41225–41247 (2020).

    Google Scholar 

  18. Zhang, Y., Zhang, S. & Xu, L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. Npj Biofilms Microbiomes 9, 66 (2023).

  19. Zhang, W. et al. Cross-talk between immunity and behavior: insights from entomopathogenic fungi and their insect hosts. FEMS Microbiol. Rev. 48, fuae003 (2024).

    Google Scholar 

  20. Engel, P. & Moran, N. A. The gut microbiota of insects – diversity in structure and function. FEMS Microbiol. Rev. 37, 699–735 (2013).

    Google Scholar 

  21. St. Leger, R. J. The evolution of complex Metarhizium-insect-plant interactions. Fungal Biology. 128, 2513–2528 (2024).

    Google Scholar 

  22. Kryukov, V. Y. et al. Fungus metarhizium Robertsii and neurotoxic insecticide affect gut immunity and microbiota in Colorado potato beetles. Sci. Rep. 11, 1299 (2021).

    Google Scholar 

  23. Kabaluk, T., Li-Leger, E. & Nam, S. Metarhizium brunneum – An enzootic wireworm disease and evidence for its suppression by bacterial symbionts. J. Invertebr. Pathol. 150, 82–87 (2017).

    Google Scholar 

  24. Hassani, M. A., Durán, P. & Hacquard, S. Microbial interactions within the plant holobiont. Microbiome 6, 58 (2018).

    Google Scholar 

  25. Compant, S. et al. Harnessing the plant Microbiome for sustainable crop production. Nat. Rev. Microbiol. https://doi.org/10.1038/s41579-024-01079-1 (2024).

    Google Scholar 

  26. Pyatnitzkiï, G. K. Ecological basis of the control measures against the beet weevil on old beet fields. in Summary of the scientific research work of the institute of Plant protection for the year 1939 (Lenin Acad. agric Sci., 1940).

    Google Scholar 

  27. Drmić, Z., Čačija, M., Virić Gašparić, H., Lemić, D. & Bažok, R. Phenology of the sugar beet weevil, Bothynoderes punctiventris germar (Coleoptera: Curculionidae), in Croatia. Bull. Entomol. Res. 109, 518–527 (2019).

    Google Scholar 

  28. European Food Safety Authority (EFSA) et al. Peer review of the pesticide risk assessment of the active substance Metarhizium brunneum BIPESCO 5/F52. EFS2 18 et al. (2020).

  29. Zottele, M. et al. Biological diabrotica management and monitoring of metarhizium diversity in Austrian maize fields following mass application of the entomopathogen metarhizium brunneum. Appl. Sci. 11, 9445 (2021).

    Google Scholar 

  30. Wöber, D. et al. The role of microbial communities in maintaining post-harvest sugar beet storability. Postharvest Biol. Technol. 222, 113401 (2025).

    Google Scholar 

  31. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with bowtie 2. Nat. Methods. 9, 357–359 (2012).

    Google Scholar 

  32. Andrews, S. FastQC: a quality control tool for high throughput sequence data. (2010).

  33. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. (2011).

  34. Callahan, B. J. et al. DADA2: High-resolution sample inference from illumina amplicon data. Nat. Methods. 13, 581–583 (2016).

    Google Scholar 

  35. Rivers, A. R., Weber, K. C., Gardner, T. G., Liu, S. & Armstrong, S. D. ITSxpress: software to rapidly trim internally transcribed spacer sequences with quality scores for marker gene analysis. F1000Res 7, 1418 (2018).

    Google Scholar 

  36. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2012).

    Google Scholar 

  37. Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).

    Google Scholar 

  38. R Core Team. A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  39. Linz, A. M. et al. Bacterial Community Composition and Dynamics Spanning Five Years in Freshwater Bog Lakes. mSphere 2, e00169-17 (2017).

  40. Saary, P., Forslund, K., Bork, P. & Hildebrand, F. RTK: efficient rarefaction analysis of large datasets. Bioinformatics 33, 2594–2595 (2017).

    Google Scholar 

  41. IBM Corp. IBM SPSS Statistics for Windows (IBM Corp, 2019).

  42. Allignol, A. & Latouche, A. C. R. A. N. Task View: Survival Analysis. (2025).

  43. Kassambara, A., Marcin, K. & Przemyslaw, B. survminer: Drawing Survival Curves using ‘ggplot2’. (2025).

  44. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (2016).

  45. Lathi, L. & Shetty, S. (2012). microbiome R package.

  46. Oksanen, J. et al. vegan: Community Ecology Package. 2.6–6.1 https://doi.org/10.32614/CRAN.package.vegan (2001).

  47. Hubert, M., Reynkens, T., Schmitt, E. & Verdonck, T. Sparse PCA for High-Dimensional data with outliers. Technometrics 58, 424–434 (2016).

    Google Scholar 

  48. McMurdie, P. J. & Holmes, S. Phyloseq: an R package for reproducible interactive analysis and graphics of Microbiome census data. PLoS ONE. 8, e61217 (2013).

    Google Scholar 

  49. Love, M. I., Huber, W. & Anders, S. Moderated Estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  50. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016).

    Google Scholar 

  51. Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021).

    Google Scholar 

  52. Foster, Z. S. L., Sharpton, T. J., Grünwald, N. J. & Metacoder An R package for visualization and manipulation of community taxonomic diversity data. PLoS Comput. Biol. 13, e1005404 (2017).

    Google Scholar 

  53. Jarmer, L. Auftreten des Rübenderbrüsslers (Asproparthenis punctiventris) in Ostösterreich unter besonderer Berücksichtigung von Witterungsverhältnissen. Master thesis (2022).

  54. Stenberg, J. A. et al. When is it biological control? A framework of definitions, mechanisms, and classifications. J. Pest Sci. 94, 665–676 (2021).

    Google Scholar 

  55. Lou, Y., Wang, G., Zhang, W. & Xu, L. Adaptation strategies of insects to their environment by collecting and utilizing external microorganisms. Integr. Zool. 20, 208–212 (2025).

    Google Scholar 

  56. Dittmann, L., Spangl, B. & Koschier, E. H. Suitability of amaranthaceae and Polygonaceae species as food source for the sugar beet weevil asproparthenis punctiventris germar. J. Plant. Dis. Prot. 130, 67–75 (2023).

    Google Scholar 

  57. Keller, S. & Zimmermann, G. Mycopathogens of Soil Insects. (Academic, 1989).

  58. Zhang, W. et al. Unlocking agro-ecosystem sustainability: exploring the bottom‐up effects of microbes, plants, and insect herbivores. Integr. Zool. 20, 465–484 (2025).

    Google Scholar 

  59. Mondal, S., Somani, J., Roy, S., Babu, A. & Pandey, A. K. Insect microbial symbionts: Ecology, Interactions, and biological significance. Microorganisms 11, 2665 (2023).

    Google Scholar 

  60. Yasika, Y. & Shivakumar, M. S. A comprehensive account of functional role of insect gut Microbiome in insect orders. J. Nat. Pesticide Res. 11, 100110 (2025).

    Google Scholar 

  61. Peral-Aranega, E. et al. New insight into the bark beetle Ips typographus bacteriome reveals unexplored diversity potentially beneficial to the host. Environ. Microbiome. 18, 53 (2023).

    Google Scholar 

  62. Lähn, K., Wolf, G., Ulrich-Eberius, C. & Koch, E. Cultural characteristics and in vitro antagonistic activity of two isolates of Mortierella alpina peyronel / Kulturmerkmale und in vitro antagonistische Aktivität Zweier isolate von Mortierella alpina peyronel. Z. für Pflanzenkrankheiten Und Pflanzenschutz / J. Plant. Dis. Prot. 109, 166–179 (2002).

    Google Scholar 

  63. DiLegge, M. J., Manter, D. K. & Vivanco, J. M. A novel approach to determine generalist nematophagous microbes reveals Mortierella globalpina as a new biocontrol agent against meloidogyne spp. Nematodes. Sci. Rep. 9, 7521 (2019).

    Google Scholar 

  64. Sacristán-Pérez-Minayo, G., López-Robles, D. J. & Rad, C. Miranda-Barroso, L. Microbial inoculation for productivity improvements and potential biological control in sugar beet crops. Front. Plant. Sci. 11, 604898 (2020).

    Google Scholar 

  65. Berg, G. et al. Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS Microbiol. Ecology 93, fix050 (2017).

  66. The Human Microbiome Project Consortium. Structure, function and diversity of the healthy human Microbiome. Nature 486, 207–214 (2012).

    Google Scholar 

  67. Fierer, N., Wood, S. A. & De Bueno, C. P. How microbes can, and cannot, be used to assess soil health. Soil Biol. Biochem. 153, 108111 (2021).

    Google Scholar 

  68. Hummadi, E. H. et al. Antimicrobial volatiles of the insect pathogen metarhizium brunneum. JoF 8, 326 (2022).

    Google Scholar 

  69. Landry, M., Comeau, A. M., Derome, N., Cusson, M. & Levesque, R. C. Composition of the Spruce budworm (Choristoneura fumiferana) midgut microbiota as affected by rearing conditions. PLoS ONE. 10, e0144077 (2015).

    Google Scholar 

  70. Dillon, R. J. & Charnley, A. K. Chemical barriers to gut infection in the desert locust: in vivo production of antimicrobial phenols associated with the bacterium Pantoea agglomerans. J. Invertebr. Pathol. 66, 72–75 (1995).

    Google Scholar 

  71. Aw, K. M. S. & Hue, S. M. Mode of infection of metarhizium spp. Fungus and their potential as biological control agents. JoF 3, 30 (2017).

    Google Scholar 

  72. Vasseur-Coronado, M. et al. Ecological role of volatile organic compounds emitted by Pantoea agglomerans as interspecies and interkingdom signals. Microorganisms 9, 1186 (2021).

    Google Scholar 

  73. Brancini, G. T. P., Hallsworth, J. E., Corrochano, L. M. & Braga, G. Ú. L. Photobiology of the keystone genus metarhizium. J. Photochem. Photobiol., B. 226, 112374 (2022).

    Google Scholar 

  74. Nicoletti, R., Andolfi, A., Becchimanzi, A. & Salvatore, M. M. Anti-Insect properties of penicillium secondary metabolites. Microorganisms 11, 1302 (2023).

    Google Scholar 

  75. Yin, G. et al. Genomic analyses of penicillium species have revealed patulin and citrinin gene clusters and novel loci involved in Oxylipin production. JoF 7, 743 (2021).

    Google Scholar 

  76. Nicoletti, R., Russo, E. & Becchimanzi, A. Cladosporium—Insect Relationships JoF 10, 78 (2024).

    Google Scholar 

  77. Quiroz-Castañeda, R. E. et al. Identification of a new Alcaligenes faecalis strain MOR02 and assessment of its toxicity and pathogenicity to insects. Biomed. Res. Int. 2015, 1–10 (2015).

    Google Scholar 

  78. Tang, X., Wang, X., Cheng, X., Wang, X. & Fang, W. Metarhizium fungi as plant symbionts. New Plant Prot. 2, e23 (2025).

  79. Flyg, C. & Xanthopoulos, K. G. Insect pathogenic properties of Serratia Marcescens. Passive and active resistance to insect immunity studied with Protease-Deficient and Phage-Resistant mutants. Microbiology 129, 453–464 (1983).

    Google Scholar 

  80. Tao, A. et al. Characterization of a novel chitinolytic Serratia marcescens strain TC-1 with broad insecticidal spectrum. AMB Expr. 12, 100 (2022).

    Google Scholar 

  81. Akhtar, M. R., Younas, M. & Xia, X. Pathogenicity of Serratia marcescens strains as biological control agent: implications for sustainable pest management. Insect Sci. 1744-7917 (13489). https://doi.org/10.1111/1744-7917.13489 (2025).

  82. Barman, S. & Bhattacharya, S. S. & Chandra Mandal, N. Serratia. in Beneficial Microbes in Agro-Ecology 27–36 (Academic Press, 2020). https://doi.org/10.1016/B978-0-12-823414-3.00003-4

  83. Hopkins, B. R. & Kopp, A. Evolution of sexual development and sexual dimorphism in insects. Curr. Opin. Genet. Dev. 69, 129–139 (2021).

    Google Scholar 

  84. Cordeschi, G., Canestrelli, D. & Porretta, D. Sex-biased phenotypic plasticity affects sexual dimorphism patterns under changing environmental conditions. Sci. Rep. 14, 892 (2024).

    Google Scholar 

  85. Belmonte, R. L., Corbally, M. K., Duneau, D. F. & Regan, J. C. Sexual dimorphisms in innate immunity and responses to infection in drosophila melanogaster. Front. Immunol. 10, 3075 (2020).

    Google Scholar 

  86. Teder, T., Kaasik, A., Taits, K. & Tammaru, T. Why do males emerge before females? Sexual size dimorphism drives sexual bimaturism in insects. Biol. Rev. 96, 2461–2475 (2021).

    Google Scholar 

  87. Singer, M. C. Sexual selection for small size in male butterflies. Am. Nat. 119, 440–443 (1982).

    Google Scholar 

  88. Zonneveld, C. Being big or emerging early? Polyandry and the Trade-Off between size and emergence in male butterflies. Am. Nat. 147, 946–965 (1996).

    Google Scholar 

  89. Liao, A., Cavigliasso, F., Savary, L. & Kawecki, T. J. Effects of an entomopathogenic fungus on the reproductive potential of Drosophila males. Ecol. Evol. 14, e11242 (2024).

    Google Scholar 

  90. Drmić, Z. et al. Area-wide mass trapping by pheromone‐based attractants for the control of sugar beet weevil (Bothynoderes punctiventris Germar, coleoptera: Curculionidae). Pest Manag. Sci. 73, 2174–2183 (2017).

    Google Scholar 

  91. Koschier, E. H., Dittmann, L. & Spangl, B. Olfactory responses of asproparthenis punctiventris germar to leaf odours of amaranthaceae plants. Insects 15, 297 (2024).

    Google Scholar 

Download references

Acknowledgements

We would like to thank Martina Dokal and Marion Seiter from AGRANA Research & Innovation Center GmbH (Austria) for providing us with weevil samples. Our thanks also go to Maria Zottele and Hermann Strasser of the University of Innsbruck (Austria) for their valuable support and expertise in shaping this work, which has been financially supported by the Federal Ministry of Agriculture and Forestry, Climate and Environmental Protection, Regions and Water Management of the Republic of Austria (Project Nr. 101749).

Funding

This study has been financially supported by the Federal Ministry of Agriculture and Forestry, Climate and Environmental Protection, Regions and Water Management of the Republic of Austria (Project Nr. 101749).

Author information

Authors and Affiliations

  1. Center for Health & Bioresources, Unit Bioresources, AIT Austrian Institute of Technology GmbH, Tulln, Austria

    Daniela Wöber, Francisco Cerqueira, Karin Hansel-Hohl & Eva M. Molin

  2. Institute of Computational Biology, University of Natural Resources and Life Sciences, Vienna, Austria

    Daniela Wöber

  3. Institute for Sustainable Plant Production (NPP), Austrian Agency for Health and Food Safety (AGES), Vienna, Austria

    Matthias Wernicke, Katharina Wechselberger & Stephan Manhalter

Authors
  1. Daniela Wöber
    View author publications

    Search author on:PubMed Google Scholar

  2. Matthias Wernicke
    View author publications

    Search author on:PubMed Google Scholar

  3. Francisco Cerqueira
    View author publications

    Search author on:PubMed Google Scholar

  4. Katharina Wechselberger
    View author publications

    Search author on:PubMed Google Scholar

  5. Karin Hansel-Hohl
    View author publications

    Search author on:PubMed Google Scholar

  6. Stephan Manhalter
    View author publications

    Search author on:PubMed Google Scholar

  7. Eva M. Molin
    View author publications

    Search author on:PubMed Google Scholar

Contributions

EMM developed and supervised the project. MW and KW designed the bioassays. MW, KW and SM conducted the experiments. MW and SM performed the statistical analysis of the bioassay. KHH prepared the microbial data, including DNA extraction, quality control and sequencing. DW and FC analysed the microbiome. DW visualised and interpreted the data. DW drafted the manuscript. EMM interpreted the data and revised the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Eva M. Molin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wöber, D., Wernicke, M., Cerqueira, F. et al. Intestinal microbiome interactions influence Metarhizium-based biocontrol efficacy against the sugar beet weevil. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36038-8

Download citation

  • Received: 09 September 2025

  • Accepted: 09 January 2026

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36038-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Sex-based biological control
  • Entomopathogenic fungi
  • Microbe-microbe interactions
  • Intestinal microbiome
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology