Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Asterinides sp. an endemic stygobitic seastar from an anchialine cave and its interactions among prokaryotic communities
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Asterinides sp. an endemic stygobitic seastar from an anchialine cave and its interactions among prokaryotic communities

  • Francisco Alonso Solís-Marín1,
  • Cindel Vergara-Ovando2,3,
  • Marcelo Rojas-Oropeza2,
  • Fernando Calderón-Gutiérrez4,
  • Gustavo Medina-Tanco5 &
  • …
  • Nathalie Cabirol2 

Scientific Reports , Article number:  (2026) Cite this article

  • 419 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Biogeochemistry
  • Ecology

Abstract

Anchialine caves house a vast variety of organisms that support complex ecological relationships among themselves and their environment. The following study was made in the anchialine karst cave El Aerolito, found on Cozumel Island, Quintana Roo, Mexico. It explores the relationship between wall microbial mats and the diet of Asterinides sp., an endemic stygobitic seastar. Wall microbial mats inside the cave were sampled and the stomach microbiome of Asterinides sp. was obtained through regurgitation. Asterinides sp. sampling was made through the Catcher Collection Chamber (CCC), an innovative technology for the exploration of these ecosystems. The obtained results suggest that microbial mats are part of the diet of Asterinides sp. The following results highlight the potential relevance of the microbial communities inside the trophic chain present in El Aerolito. Additionally, the methodology presented here provides a useful framework for future ecological research in El Aerolito cave.

Similar content being viewed by others

Microbial diversity and proxy species for human impact in Italian karst caves

Article Open access 13 January 2023

Sea spray allows for the growth of subaerial microbialites at the driest desert on Earth

Article Open access 28 August 2024

A possible unique ecosystem in the endoglacial hypersaline brines in Antarctica

Article Open access 05 January 2023

Data availability

The sequence datasets that support this study are available on NCBI Sequence Read Archive (SRA), under BioProject number PRJNA1119047 (https://www.ncbi.nlm.nih.gov/sra/PRJNA1119047) ; individual accession numbers: SAM41635988, SAM41635989, SAM41635990, SAM41635991, SAM41635992, SAM41635993, SAM41635994, SAM41635995, SAM41635996, SAM41635997, SAM41635998, SAM41635999. The data generated during the current study are included in the supplementary material.

References

  1. Estrada Medina, H., Jiménez Osornio, J. J. & Álvarez-Rivera, O. Barrientos Medina, R. C. El karst de Yucatán: Su origen, morfología y biología. Acta Univ. 29, 1–18. https://doi.org/10.15174/au.2019.2292 (2019).

    Google Scholar 

  2. Calderón-Gutiérrez, F., Sánchez-Ortiz, C. A. & Huato-Soberanis, L. Ecological patterns in anchialine caves. PLoS One. 13, e0202909. https://doi.org/10.1371/journal.pone.0202909 (2018).

    Google Scholar 

  3. Solís-Marín, F. A., Laguarda-Figueras, A., Gutierrez, F. V., Mejía, L. & Yáñez, G. Echinoderm fauna of anchialine caves in Cozumel Island, Mexico. Echinoderms: Durham-Proceedings of the 12th International Echinoderm Conference, 259–261. https://doi.org/10.1201/9780203869543-c42 (2010).

  4. Márquez-Borrás, F. et al. & Mejía-Ortiz, L. M. Troglomorphism in the brittle star Ophionereis commutabilis Bribiesca-Contreras et al., 2019 (Echinodermata, Ophiuroidea, Ophionereididae), Subterr Biol. 33, 87–108. https://doi.org/10.3897/subtbiol.33.48721 (2020).

  5. Reddell, J. R. A review of the cavernicole fauna of Mexico, Guatemala, and Belize. Bull. Tex. Mem. Mus. Univ. Tex. Austin. 27, 1–327 (1981).

    Google Scholar 

  6. Bribiesca-Contreras, G., Solís-Marín, F. A., Laguarda-Figueras, A. & Zaldívar-Riverón, A. Identification of echinoderms (Echinodermata) from an anchialine cave in Cozumel Island, Mexico, using DNA barcodes. Mol. Ecol. Resour. 13, 1137–1145. https://doi.org/10.1111/1755-0998.12098 (2013).

    Google Scholar 

  7. Jangoux, M. Food and feeding mechanisms: Asteroidea. In Echinorderm Nutrition, vol. 1 (eds Jangoux, M. & Lawrence, J. M.) 117–159 (CRC, 1982).

  8. Brankovits, D. et al. Changes in organic matter deposition can impact benthic marine meiofauna in karst subterranean estuaries. Front. Environ. Sci. 9 https://doi.org/10.3389/fenvs.2021.670914 (2021).

  9. Zhu, H. Z. et al. Bacteria and metabolic potential in karst caves revealed by intensive bacterial cultivation and genome assembly. Appl. Environ. Microbiol. 87, e02440–e02420. https://doi.org/10.1128/AEM.02440-20 (2021).

    Google Scholar 

  10. Kajan, K., Cukrov, N., Cukrov, N., Bishop-Pierce, R. & Orlić, S. Microeukaryotic and prokaryotic diversity of anchialine caves from Eastern Adriatic sea Islands. Microb. Ecol. 83, 257–270. https://doi.org/10.1007/s00248-021-01760-5 (2022).

    Google Scholar 

  11. Tetu, S. G. et al. Life in the dark: metagenomic evidence that a microbial slime community is driven by inorganic nitrogen metabolism. ISME J. 7, 1227–1236. https://doi.org/10.1038/ismej.2013.14 (2013).

    Google Scholar 

  12. Por, F. D. Ophel: a groundwater biome based on chemoautotrophic resources. The global significance of the Ayyalon cave finds. Isr. Hydrobiol. 592, 1–10. https://doi.org/10.1007/s10750-007-0795-2 (2007).

    Google Scholar 

  13. Montano, E. T. & Henderson, L. O. Studies of antibiotic production by cave Bacteria. In Cave Microbiomes: A Novel Resource for Drug Discovery. Springer Brief in Microbiology (ed. Cheeptham N.) 109–130. https://doi.org/10.1007/978-1-4614-5206-5_6 (2013).

  14. Archana, A., Francis, C. A. & Boehm, A. B. The beach aquifer microbiome: research gaps and data needs. Front. Environ. Sci. 9 https://doi.org/10.3389/fenvs.2021.653568 (2021).

  15. Simon, K. S., Benfield, E. F. & Macko, S. A. Food web structure and the role of epilithic biofilms in cave streams. Ecology. 84, 2395–2406 (2003). https://doi.org/10.1890/02-334 2206–2232 (2021). https://doi.org/10.1038/s41396-021-00917-x.

  16. Brankovits, D. & Pohlman, J. W. Methane oxidation dynamics in a karst subterranean estuary. Geochim. Cosmochim. Acta. 277, 320–333. https://doi.org/10.1016/j.gca.2020.03.007 (2020).

    Google Scholar 

  17. Menning, D. M. et al. Aquifer discharge drives microbial community change in karst estuaries. Estuaries Coast. 41, 430–443. https://doi.org/10.1007/s12237-017-0281-7 (2018).

    Google Scholar 

  18. Patin, N. V. et al. Gulf of Mexico blue hole harbors high levels of novel microbial lineages. ISME J. 15, 2206–2232. https://doi.org/10.1038/s41396-021-00917-x (2021).

    Google Scholar 

  19. Medina-Tanco, G. et al. A new collection method for Asterinides sp., a troglobitic seastar inhabiting the anchialine karst system El Aerolito, Cozumel Island, Mexico. (2021). Unpublished data.

  20. Comeau, A. M., Li, W. K. W., Tremblay, J. É., Carmack, E. C. & Lovejoy, C. Arctic ocean microbial community structure before and after the 2007 record sea ice minimum. PLoS One. 6, e27492. https://doi.org/10.1371/journal.pone.0027492 (2011).

    Google Scholar 

  21. Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods. 13, 581–583. https://doi.org/10.1038/nmeth.3869 (2016).

    Google Scholar 

  22. Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2012).

    Google Scholar 

  23. Oksanen, J. et al. Vegan: Community ecology package. R package version 2.6-4. CRAN (2022). https://CRAN.R-project.org/package=vegan

  24. McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of Microbiome census data. PLoS One. 8, e61217. https://doi.org/10.1371/journal.pone.0061217 (2013).

    Google Scholar 

  25. Lahti, L. et al. Tools for microbiome analysis in R. Microbiome package version 1.31.2. Bioconductor, 2017. https://github.com/microbiome/microbiome

  26. Wickham, H. et al. Welcome to the tidyverse. J. Open. Source Softw. 4, 1686. https://doi.org/10.21105/joss.01686 (2019).

    Google Scholar 

  27. Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235. https://doi.org/10.1128/AEM.71.12.8228-8235.2005 (2005).

    Google Scholar 

  28. Wemheuer, F. et al. Tax4Fun2: prediction of habitat-specific functional profiles and functional redundancy based on 16S rRNA gene sequences. Environ. Microbiome. 15, 11. https://doi.org/10.1186/s40793-020-00358-7 (2020).

    Google Scholar 

  29. Jurado, V. et al. Dominance of Arcobacter in the white filaments from the thermal sulfidic spring of fetida cave (Apulia, Southern Italy). Sci. Total Environ. 800, 149465. https://doi.org/10.1016/j.scitotenv.2021.149465 (2021).

    Google Scholar 

  30. Brankovits, D. et al. Methane-and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nat. Commun. 8, 1835. https://doi.org/10.1038/s41467-017-01776-x (2017).

    Google Scholar 

  31. Calderón-Gutiérrez, F., Iliffe, T. M., Borda, E., Yáñez Mendoza, G. & Labonté, J. Response and resilience of karst subterranean estuary communities to precipitation impacts. Ecol. Evol. 13, e10415. https://doi.org/10.1002/ece3.10415 (2023).

    Google Scholar 

  32. Lee, H. R., Park, S. H., Kim, D. H., Moon, K. M. & Heo, M. S. Microbial community analysis isolated from red starfish (Certonardoa semiregularis) gut. J. Life Sci. 28, 955–961 (2018).

    Google Scholar 

  33. Choi, G. G., Lee, O. H. & Lee, G. H. The diversity of heterotrophic bacteria isolated from intestine of starfish (Asterias amurensis) by analysis of 16S rDNA sequence. Korean J. Ecol. 26, 307–312 (2003).

    Google Scholar 

  34. Okazaki, Y. et al. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. Microbiome 9, 24. https://doi.org/10.1186/s40168-020-00974-y (2021).

    Google Scholar 

  35. Zhou, L. et al. Environmental filtering dominates bacterioplankton community assembly in a highly urbanized estuarine ecosystem. Environ. Res. 196, 110934. https://doi.org/10.1016/j.envres.2021.110934 (2021).

    Google Scholar 

  36. Ghylin, T. W. et al. Comparative single-cell genomics reveals potential ecological niches for the freshwater aci actinobacteria lineage. ISME J. 8, 2503–2516. https://doi.org/10.1038/ismej.2014.135 (2014).

    Google Scholar 

  37. Zufiaurre, A. et al. Bacterioplankton seasonality in deep high-mountain lakes. Front. Microbiol. 13, 935378. https://doi.org/10.3389/fmicb.2022.935378 (2022).

    Google Scholar 

  38. He, H. et al. Community structure, abundance and potential functions of bacteria and archaea in the Sansha Yongle blue Hole, Xisha, South China sea. Front. Microbiol. 10, 2404. https://doi.org/10.3389/fmicb.2019.02404 (2019).

    Google Scholar 

  39. Stoessell, R. K., Moore, Y. H. & Coke, J. G. The occurrence and effect of sulfate reduction and sulfide oxidation on coastal limestone dissolution in Yucatan cenotes. Groundwater 31, 566–575. https://doi.org/10.1111/j.1745-6584.1993.tb00589.x (1993).

    Google Scholar 

  40. Parrilli, E. et al. The Art of adapting to extreme environments: the model system Pseudoalteromonas. Phys. Life Rev. 36, 137–161. https://doi.org/10.1016/j.plrev.2019.04.003 (2021).

    Google Scholar 

  41. Jensen, S. et al. The relative abundance and transcriptional activity of marine sponge-associated microorganisms emphasizing groups involved in sulfur cycle. Microb. Ecol. 73, 668–676. https://doi.org/10.1007/s00248-016-0836-3 (2017).

    Google Scholar 

  42. Zhou, Q., Jia, L., Wu, W. & Wu, W. Introducing PHBV and controlling the pyrite sizes achieved the pyrite-based mixotrophic denitrification under natural aerobic conditions: low sulfate production and functional microbe interaction. J. Clean. Prod. 366, 132986. https://doi.org/10.1016/j.jclepro.2022.132986 (2022).

    Google Scholar 

  43. Moore, A. Characterization of the native microbial communities in the karst aquifer of Yucatan Peninsula, Mexico. Graduate Research Theses & Dissertations. 1753 (2014).

  44. Durham, B. P. et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand. Genomic Sci. 9, 632–645. https://doi.org/10.4056/sigs.4998989 (2014).

    Google Scholar 

  45. Bauermeister, J., Ramette, A. & Dattagupta, S. Repeatedly evolved host-specific ectosymbioses between sulfur-oxidizing bacteria and amphipods living in a cave ecosystem. PLoS One. 7, e50254. https://doi.org/10.1371/journal.pone.0050254 (2012).

    Google Scholar 

  46. Brigmon, R. L. & De Ridder, C. Symbiotic relationship of Thiothrix spp. with an echinoderm. Appl. Environ. Microbiol. 64, 3491–3495. https://doi.org/10.1128/AEM.64.9.3491-3495.1998 (1998).

    Google Scholar 

  47. Ulloa, O., Canfield, D. E., DeLong, E. F., Letelier, R. M. & Stewart, F. J. Microbial oceanography of anoxic oxygen minimum zones. Proc. Natl. Acad. Sci. 109, 15996–16003. https://doi.org/10.1073/pnas.1205009109 (2012).

    Google Scholar 

  48. Woebken, D. et al. A microdiversity study of anammox bacteria reveals a novel candidatus Scalindua phylotype in marine oxygen minimum zones. Environ. Microbiol. 10, 3106–3119. https://doi.org/10.1111/j.1462-2920.2008.01640.x (2008).

    Google Scholar 

  49. Walsh, D. A. et al. Metagenome of a versatile chemolithoautotroph from expanding oceanic dead zones. Science 326, 578–582. https://doi.org/10.1126/science.1175309 (2009).

    Google Scholar 

  50. Jurado, V. et al. Microbial communities in carbonate precipitates from drip waters in Nerja cave. Spain PeerJ. 10, e13399. https://doi.org/10.7717/peerj.13399 (2022).

    Google Scholar 

  51. Sjöberg, S., Callac, N., Allard, B., Smittenberg, R. H. & Dupraz, C. Microbial communities inhabiting a rare Earth element enriched birnessite-type manganese deposit in the Ytterby Mine, Sweden. Geomicrobiol. J. 35, 657–674. https://doi.org/10.1080/01490451.2017.1399722 (2018).

    Google Scholar 

  52. Brettar, I., Christen, R. & Höfle, M. G. Rheinheimera Baltica gen. nov., sp. nov., a Bluecoloured bacterium isolated from the central Baltic sea. Int. J. Syst. Evol. Microbiol. 52, 1851–1857. https://doi.org/10.1099/00207713-52-5-1851 (2002).

    Google Scholar 

  53. Contos, A. K., James, J. M., Heywood, B., Pitt, K. & Rogers, P. Morphoanalysis of bacterially precipitated subaqueous calcium carbonate from Weebubbie Cave, Australia. Geomicrobiol. J. 18, 331–343. https://doi.org/10.1080/01490450152467822 (2001).

    Google Scholar 

  54. Holmes, A. J. et al. Phylogenetic structure of unusual aquatic microbial formations in nullarbor caves, Australia. Environ. Microbiol. 3, 256–264. https://doi.org/10.1046/j.1462-2920.2001.00187.x (2001).

    Google Scholar 

  55. Strathmann, R. R. Feeding and nonfeeding larval development and life-history evolution in marine invertebrates. Annu. Rev. Ecol. Syst. 16, 339–361 (1985). http://www.jstor.org/stable/2097052 [Accessed 22 Sept. 2025].

    Google Scholar 

  56. Nakagawa, S. et al. Microbiota in the coelomic fluid of two common coastal starfish species and characterization of an abundant Helicobacter-related taxon. Sci. Rep. 7, 1–10. https://doi.org/10.1038/s41598-017-09355-2 (2017).

    Google Scholar 

  57. Quigley, M. S., Santschi, P. H., Hung, C. C., Guo, L. & Honeyman, B. D. Importance of acid polysaccharides for 234Th complexation to marine organic matter. Limnol. Oceanogr. 47, 367–377. https://doi.org/10.4319/lo.2002.47.2.0367 (2002).

    Google Scholar 

  58. Dobson, W. E., Stancyk, S. E., Clements, L. A. & Showman, R. M. Nutrient translocation during early disc regeneration in the Brittlestar Microphiopholis Gracillima (Stimpson) (Echinodermata: Ophiuroidea). Biol. Bull. 180, 167–184. https://doi.org/10.2307/1542439 (1991).

    Google Scholar 

  59. Hoskins, D., Stancyk, S. & Decho, A. Utilization of algal and bacterial extracellular polymeric secretions (EPS) by the deposit-feeding Brittlestar Amphipholis Gracillima (Echinodermata). Mar. Ecol. Prog. Ser. 247, 93–101. https://doi.org/10.3354/meps247093 (2003).

    Google Scholar 

  60. Selck, H., Decho, A. W. & Forbes, V. E. Effects of chronic metal exposure and sediment organic matter on digestive absorption efficiency of cadmium by the deposit-feeding polychaete Capitella species I. Environ. Toxicol. Chem. 18, 1289–1297. https://doi.org/10.1002/etc.5620180631 (1999).

    Google Scholar 

  61. Bhaskar, P. V. & Bhosle, N. B. Bacterial extracellular polymeric substance (EPS): A carrier of heavy metals in the marine food-chain. Environ. Int. 32, 191–198. https://doi.org/10.1016/j.envint.2005.08.010 (2006).

    Google Scholar 

  62. Prabagaran, S. R., Manorama, R., Delille, D. & Shivaji, S. Predominance of Roseobacter, Sulfitobacter, Glaciecola and Psychrobacter in seawater collected off Ushuaia, Argentina, Sub-Antarctica. FEMS Microbiol. Ecol. 59, 342–355. https://doi.org/10.1111/j.1574-6941.2006.00213.x (2007).

    Google Scholar 

  63. Suárez-Moo, P. et al. Characterization of sediment microbial communities at two sites with low hydrocarbon pollution in the Southeast Gulf of Mexico. PeerJ 8, e10339. https://doi.org/10.7717/peerj.10339 (2020).

    Google Scholar 

  64. Cattaneo, A. et al. Carboxylic ester hydrolases from Antarctic psychrophilic psychrobacter strains: from genome prospecting to biotreatment of polyester plastics. Bioresour. Technol. 436, 133052. https://doi.org/10.1016/j.biortech.2025.133052 (2025).

    Google Scholar 

Download references

Acknowledgements

We thank Sarah Rubelowsky and Shari Rohret for their support in the field. This work was supported by the project “Tapetes microbianos y microbioma de Asterinides sp., (Echinodermata: Asteroidea) a través de su dinámica y función en la cueva el Aerolito, Isla Cozumel, Quintana Roo, México” (PAPIIT-IN207021, UNAM), the UNAM grant to Vergara-Ovando Cindel; thanks also to the participating institutions and Coco Tortuga A.C. for their additional financial support. G. Medina Tanco acknowledges financial support of DGAPA, through PAPIIT IT102926, and the Institute of Nuclear Sciences ICN-UNAM and OEI DGAJ-DPI-200922-1139. We thank the participation of Ing. Jorge Ramírez Casteñón with Dr. Gustavo Medina-Tanco for development of the CCC (LINX, Institute of Nuclear Sciences, UNAM), Dr. Silvia Espinoza Matías for scanning electron microscopy (Laboratory of Microscopy, Faculty of Sciences, UNAM) and Biol. Mariana Gonzalez-Macedo for technical and bioinformatics support, as well as English revision (Functional Microbial Ecology of Soil and Environmental Protection Group, Faculty of Sciences, UNAM).

Funding

Research funding is a grant provided by Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México, PAPIIT-IN207021, to financially support the scientific project; and by Universidad Nacional Autónoma de México, to support posgraduate grant.

Author information

Authors and Affiliations

  1. Instituto de Ciencias del Mar y Limnología (ICML), National Echinoderm Collection ‘Dra. Ma. Elena Caso Muñoz’, National Autonomous University of Mexico (UNAM), Mexico City, Mexico

    Francisco Alonso Solís-Marín

  2. Functional Microbial Ecology of Soil and Environmental Protection Group, Department of Ecology and Natural Resources, Faculty of Sciences, UNAM, Mexico City, Mexico

    Cindel Vergara-Ovando, Marcelo Rojas-Oropeza & Nathalie Cabirol

  3. Postgraduate in Biological Science, National Autonomous University of Mexico (UNAM), Mexico City, Mexico

    Cindel Vergara-Ovando

  4. Stephen F. Austin State University, Nacogdoches, TX, USA

    Fernando Calderón-Gutiérrez

  5. LINX, Institute of Nuclear Sciences, UNAM, Mexico City, Mexico

    Gustavo Medina-Tanco

Authors
  1. Francisco Alonso Solís-Marín
    View author publications

    Search author on:PubMed Google Scholar

  2. Cindel Vergara-Ovando
    View author publications

    Search author on:PubMed Google Scholar

  3. Marcelo Rojas-Oropeza
    View author publications

    Search author on:PubMed Google Scholar

  4. Fernando Calderón-Gutiérrez
    View author publications

    Search author on:PubMed Google Scholar

  5. Gustavo Medina-Tanco
    View author publications

    Search author on:PubMed Google Scholar

  6. Nathalie Cabirol
    View author publications

    Search author on:PubMed Google Scholar

Contributions

F.A.S.M., C.V.O., M.R.O., F.C.G., G.M.T. and N.C. wrote the main manuscript text and C.V.O. prepared Figs. 1 and 2. F.A.S.M., M.R.O. and N.C. developed the protocol experiment and supervised the project. C.V.O. performed laboratory experiments . F.A.S.M. and N.C. supervised the sampling. F.C.G. made the diving sampling. N.C. prepared samples for preservation. M.R.O. supervised experiments in laboratory. G.M.T. developed the CCC (sampling unit). All authors reviewed the manuscript.

Corresponding author

Correspondence to Nathalie Cabirol.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Supplementary Material 3

Supplementary Material 4

Supplementary Material 5

Supplementary Material 6

Supplementary Material 7

Supplementary Material 8

Supplementary Material 9

Supplementary Material 10

Supplementary Material 11

Supplementary Material 12

Supplementary Material 13

Supplementary Material 14

Supplementary Material 15

Supplementary Material 16

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solís-Marín, F.A., Vergara-Ovando, C., Rojas-Oropeza, M. et al. Asterinides sp. an endemic stygobitic seastar from an anchialine cave and its interactions among prokaryotic communities. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36065-5

Download citation

  • Received: 04 August 2024

  • Accepted: 09 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36065-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology