Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Assessment of low dietary inclusion of nutraceuticals derived from microalgae to enhance intestinal function in gilthead seabream (Sparus aurata) juveniles
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 15 January 2026

Assessment of low dietary inclusion of nutraceuticals derived from microalgae to enhance intestinal function in gilthead seabream (Sparus aurata) juveniles

  • Alba Galafat1,
  • M. I. Sáez1,
  • A. J. Vizcaíno1,
  • A. Barany2 nAff5,
  • E. Perera3,
  • D. Sánchez-Ruiz2,
  • T. F. Martínez1,
  • J. Fuentes3,
  • J. A. Martos-Sitcha2 &
  • …
  • F. J. Alarcón-López1,4 

Scientific Reports , Article number:  (2026) Cite this article

  • 477 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Animal physiology
  • Ichthyology

Abstract

Development of more sustainable aquaculture requires alternatives to traditional fishmeal and fish oil in aquafeeds. Among the options, microalgae have emerged as promising functional ingredient, with the potential to provide additional benefits in aquaculture animals. The objective of this piece of research was to assess the effect of the microalgal-based functional ingredients, LB-GUThealth and LB-GREENboost on the intestinal function in juvenile gilthead seabream. Digestive enzyme activities, intestinal mucosa structure and ultrastructure, expression of key intestinal genes, and parameters like transepithelial resistance and permeability were analyzed after administration of feeds supplemented with those algal-based ingredients at two dietary levels (0.5 and 1%) during 91 days. Results indicated improvements in feed utilization efficiency, reflected by an expansion of the absorptive surface of the intestinal mucosa, enlargement of the apical surface of enterocytes and extension of microvilli length, together with elevated activity levels of digestive enzymes involved in macronutrient digestion. Additionally, no alterations were observed in basal gene expression related to permeability or the immune system, nor in the bioelectrical parameters associated with the integrity of the intestinal barrier. Results obtained evidenced that the algal-based ingredients tested seem to be useful for improving the intestinal functionality in juvenile gilthead seabream.

Data availability

The datasets generated and analyzed during the current study have been submitted to the Gene Expression Omnibus (GEO) repository (record GSE289127) with the primary accession code oroxcacsxtcbloj.

Abbreviations

EA:

Enterocyte apical area

FCR:

Feed conversion ratio

ILI:

Intestine length index

LBGb :

LB-GREENboost functional ingredient

LBGh :

LB-GUThealth functional ingredient

MD:

Microvilli diameter

ML:

Microvilli length

Papp:

Apparent permeability

SEM:

Scanning electron microscopy

TAS:

Total enterocyte absorption surface

TEM:

Transmission electron microscopy

TER:

Transepithelial resistance

TJs:

Intestinal tight junctions

U:

Unit of enzyme activity

References

  1. FAO. The State of World Fisheries and Aquaculture. (2022). https://www.fao.org/3/cc0461en/cc0461en.pdf.

  2. Lu, J., Xiao, Y. & Zhang, W. Taste, sustainability, and nutrition: consumers’ attitude toward innovations in aquaculture products. Aquaculture 587, 740834. https://doi.org/10.1016/j.aquaculture.2024.740834 (2024).

    Google Scholar 

  3. Ahmad, I., Ahmad, I. & Ahmad, B. Effects of dietary Tryptophan levels on growth performance, plasma profile, intestinal antioxidant capacity and growth related genes in rainbow trout (Oncorhynchus mykiss) fingerlings. Aquaculture 585, 740710. https://doi.org/10.1016/j.aquaculture.2024.740710 (2024).

    Google Scholar 

  4. Chen, L. et al. Effects of replacing fishmeal with different proportions of mixed protein source in the diet of largemouth bass (Micropterus salmoides). Comp. Biochem. Physiol. D: Genomics Proteomics. 49, 101181. https://doi.org/10.1016/j.cbd.2023.101181 (2024).

    Google Scholar 

  5. Huang, B. et al. Effects of fishmeal replacement by black soldier fly on growth performance, digestive enzyme activity, intestine morphology, intestinal flora and immune response of Pearl Gentian grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Fish Shellfish Immunol. 120, 497–506. https://doi.org/10.1016/j.fsi.2021.12.027 (2022).

    Google Scholar 

  6. Hussain, S. M. et al. Substitution of fishmeal: highlights of potential plant protein sources for aquaculture sustainability. Heliyon 10 (4), E26573. https://doi.org/10.1016/j.heliyon.2024.e26573 (2024).

    Google Scholar 

  7. Idenyi, J. N., Eya, J. C., Nwankwegu, A. S. & Nwoba, E. G. Aquaculture sustainability through alternative dietary ingredients: microalgal value-added products. Eng. Microbiol. 2 (4), 100049. https://doi.org/10.1016/j.engmic.2022.100049 (2022).

    Google Scholar 

  8. Szczepański, A. et al. Lupin: A promising alternative protein source for aquaculture feeds? Aquaculture Rep. 26, 101281. https://doi.org/10.1016/j.aqrep.2022.101281 (2022).

    Google Scholar 

  9. Woolley, L. et al. Gas to protein: microbial single cell protein is an alternative to fishmeal in aquaculture. Sci. Total Environ. 859 (1), 160141. https://doi.org/10.1016/j.scitotenv.2022.160141 (2023).

    Google Scholar 

  10. Perera, E. et al. Low dietary inclusion of nutraceuticals from microalgae improves feed efficiency and modifies intermediary metabolisms in Gilthead sea Bream (Sparus aurata). Sci. Rep. 10, 18676. https://doi.org/10.1038/s41598-020-75693-3 (2020).

    Google Scholar 

  11. Molina-Roque, L. et al. Enzymatic treatment of plant proteins in combination with algae-based nutraceutical inclusion in Aquafeeds improves growth performance and physiological traits in the greater Amberjack (Seriola dumerili). Aquaculture 598, 742012. https://doi.org/10.1016/j.aquaculture.2024.742012 (2024).

    Google Scholar 

  12. Nagappan, S. et al. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol. 341, 1–20. https://doi.org/10.1016/j.jbiotec.2021.09.003 (2021).

    Google Scholar 

  13. Tham, P. E. et al. Insights of microalgae-based aquaculture feed: A review on circular bioeconomy and perspectives. Algal Res. 74, 103186. https://doi.org/10.1016/j.algal.2023.103186 (2023).

    Google Scholar 

  14. Acién, F. G., Fernández, J. M., MAgán, J. J. & Molina, E. Production cost of a real microalgae production plant and strategies to reduce it. Biotechnol. Adv. 30 (6), 1344–1353. https://doi.org/10.1016/j.biotechadv.2012.02.005 (2012).

    Google Scholar 

  15. Senroy, S. & Pal, R. Microalgae in aquaculture: A review with special references to nutritional value and fish dietetics. Proc. Zool. Soc. 68 (1), 1–8. https://doi.org/10.1007/s12595-013-0089-9 (2014).

    Google Scholar 

  16. Mueller, J. et al. Microalgae as functional feed for Atlantic salmon: effects on growth, health, immunity, muscle fatty acid and pigment deposition. Front. Mar. Sci. 10 https://doi.org/10.3389/fmars.2023.1273614 (2023).

  17. Ibáñez, E. & Cifuentes, A. Benefits of using algae as natural sources of functional ingredients. J. Food Agric. 93 (4), 703–709. https://doi.org/10.1002/jsfa.6023 (2012).

    Google Scholar 

  18. Shah, M. R. et al. Microalgae in Aquafeeds for a sustainable aquaculture industry. J. Appl. Phycol. 30 (1), 197–213. https://doi.org/10.1007/s10811-017-1234-z (2018).

    Google Scholar 

  19. Jensen, L. B., Provan, F., Larssen, E., Bron, J. E. & Obach, A. Reducing sea lice (Lepeophtheirus salmonis) infestation of farmed Atlantic salmon (Salmo Salar L.) through functional feeds. Aquacult. Nutr. 21 (6), 983–993. https://doi.org/10.1111/anu.12222 (2015).

    Google Scholar 

  20. Galafat, A. et al. Evaluation of Arthrospira sp. enzyme hydrolysate as dietary additive in Gilthead seabream (Sparus aurata) juveniles. J. Appl. Phycol. 32, 3089–3100. https://doi.org/10.1007/s10811-020-02141-0 (2020).

    Google Scholar 

  21. Galafat, A. et al. Assessment of dietary inclusion of crude or hydrolysed Arthrospira platensis biomass in starter diets for gilthead seabream (Sparus aurata). Aquaculture 548, 737680. (2022). https://doi.org/10.1016/j.aquaculture.2021.737680Gatesoupe.

  22. Sáez, M. I. et al. Evaluation of Nannochloropsis Gaditana Raw and hydrolysed biomass at low inclusion level as dietary functional additive for Gilthead seabream (Sparus aurata) juveniles. Aquaculture 556, 738288. https://doi.org/10.1016/j.aquaculture.2022.738288 (2022).

    Google Scholar 

  23. Vizcaíno, A. J. et al. Growth performance, body composition and digestive functionality of Senegalese sole (Solea senegalensis Kaup, 1858) juveniles fed diets including microalgae freeze-dried biomass. Fish. Physiol. Biochem. 44, 1–17. https://doi.org/10.1007/s10695-018-0462-8 (2018).

    Google Scholar 

  24. Wei, M., Parrish, C. C., Guerra, N. I., Tibbetts, S. M. & Colombo, S. M. Dietary inclusion of a marine microalgae meal for Atlantic salmon (Salmo salar): impact of Pavlova sp. 459 on growth performance and tissue lipid composition. Aquaculture 553, 738084. https://doi.org/10.1016/j.aquaculture.2022.738084 (2022).

    Google Scholar 

  25. He, Y. et al. Microalga Isochrysis Galbana in feed for Trachinotus ovatus: effect on growth performance and fatty acid composition of fish fillet and liver. Aquacult. Int. 26, 1261–1280. https://doi.org/10.1007/s10499-018-0282-y (2018).

    Google Scholar 

  26. Gong, Y. et al. Microalgae scenedesmus sp. as a potential ingredient in low fishmeal diets for Atlantic salmon (Salmo Salar L). Aquaculture 501, 455–464. https://doi.org/10.1016/j.aquaculture.2018.11.049 (2019).

    Google Scholar 

  27. Liu, C. et al. Utilization of Nannochloropsis oceanica in plant-based feeds by Atlantic salmon (Salmo salar). Aquaculture 561, 738651. https://doi.org/10.1016/j.aquaculture.2022.738651 (2022).

  28. Abdel-Tawwab, M. et al. The green microalga Scenedesmus quadricauda modulates the performance, immune indices, and disease resistance of nile tilapia fingerlings. Aquaculture 560, 738550. https://doi.org/10.1016/j.aquaculture.2022.738550 (2022).

    Google Scholar 

  29. Bongiorno, T. et al. Hydrolyzed microalgae from biorefinery as a potential functional ingredient in Siberian sturgeon (A. baerii Brandt) Aquafeed. Algal Res. 62, 102592. https://doi.org/10.1016/j.algal.2021.102592 (2022).

    Google Scholar 

  30. Cerezuela, R., Meseguer, J. & Esteban, M. A. Effects of dietary inulin, Bacillus subtilis and microalgae on intestinal gene expression in Gilthead seabream (Sparus aurata L). Fish Shellfish Immunol. 34 (3), 843–848. https://doi.org/10.1016/j.fsi.2012.12.026 (2013).

    Google Scholar 

  31. Kousoulaki, K. et al. Microalgal Schizochytrium limacinum biomass improves growth and Filet quality when used long-term as a replacement for fish oil, in modern salmon diets. Front. Mar. Sci. 7, 57. https://doi.org/10.3389/fmars.2020.00057 (2020).

    Google Scholar 

  32. Erlanger, B. F., Kokowsky, N. & Cohen, W. The Preparation and properties of two new chromogenic substrates of trypsin. Arch. Biochem. Biophys. 95 (2), 271–278. https://doi.org/10.1016/0003-9861(61)90145-X (1961).

    Google Scholar 

  33. Del Mar, E. G., Largman, C., Browdrick, J. W. & Geocas, M. C. A sensitive new substrate for chymotrypsin. Anal. Biochem. 99 (2), 316–320. https://doi.org/10.1016/S0003-2697(79)80013-5 (1979).

    Google Scholar 

  34. Alarcón, F. J., Díaz, M., Moyano, F. J. & Abellán, E. Characterization and functional properties of digestive proteases in two sparids; Gilthead seabream (Sparus aurata) and common dentex (Dentex dentex). Fish Physiol. Biochem. 19 (3), 257–267. https://doi.org/10.1023/A:1007717708491 (1998).

    Google Scholar 

  35. Pfleiderer, G. Particle-bound aminopeptidase from pig kidney. Methods Enzymol. 19, 514–521. https://doi.org/10.1016/0076-6879(70)19038-0 (1970).

    Google Scholar 

  36. Bergmeyer, H. U. Methods of Enzymatic Analysis (Verlag Chemie-Academic, 1974).

  37. Vizcaíno, A. J. et al. Effects of the microalga Scenedesmus almeriensis as fishmeal alternative in diets for gilthead sea bream, Sparus aurata, juveniles. Aquaculture 431, 34–43. https://doi.org/10.1016/j.aquaculture.2014.05.010 (2014).

  38. Estensoro, I. et al. Dietary butyrate helps to restore the intestinal status of a marine teleost (Sparus aurata) fed extreme diets low in fish meal and fish oil. Plos One. 11 (11), e0166564. https://doi.org/10.1371/journal.pone.0166564 (2016).

    Google Scholar 

  39. Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (1), research003. https://doi.org/10.1186/gb-2002-3-7-research0034 (2002).

    Google Scholar 

  40. Gatlin, I. I. I. D. M. et al. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac. Res. 38 (6), 551–579. https://doi.org/10.1111/j.1365-2109.2007.01704.x (2007).

    Google Scholar 

  41. Encarnação, P. 5 - Functional feed additives in aquaculture feeds. In Aquafeed formulation (217–237). Academic Press. https://doi.org/10.1016/B978-0-12-800873-7.00005-1 (2016).

  42. Li, P. & Gatlin, D. M. III Nucleotide nutrition in fish: current knowledge and future applications. Aquaculture 251 (1), 141–152. https://doi.org/10.1016/j.aquaculture.2005.01.009 (2006).

    Google Scholar 

  43. Herrera, M., Mancera, J. M. & Costas, B. The use of dietary additives in fish stress mitigation: comparative endocrine and physiological responses. Frontiers 10, 447. https://doi.org/10.3389/fendo.2019.00447 (2019).

    Google Scholar 

  44. Tacon, A. G. J., & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285 (1-4), 146–158. https://doi.org/10.1016/j.aquaculture.2008.08.015 (2008).

  45. Naylor, R. L. et al. Feeding aquaculture in an era of finite resources. Proc. Natl. Acad. Sci. 106(36), 15103–15110. https://doi.org/10.1073/pnas.0905235106 (2009).

  46. Khosravi, S. et al. Supplementation of protein hydrolysates to a low-fishmeal diet improves growth and health status of juvenile Olive flounder. Paralichthys Olivaceus World Aquaculture Soc. 45 (5), 897–911. https://doi.org/10.1111/jwas.12436 (2017).

    Google Scholar 

  47. Wells, M. L. et al. Algae as nutritional and functional food sources: revisiting our Understanding. J. Appl. Phycol. 29, 949–982. https://doi.org/10.1007/s10811-016-0974-5 (2017).

    Google Scholar 

  48. Øverland, M., Mydland, L. T. & Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Sci. Food Agric. 99 (1), 13–24. https://doi.org/10.1002/jsfa.9143 (2018).

    Google Scholar 

  49. Qiao, H. et al. Feeding effects of the microalga Nannochloropsis sp. on juvenile turbot (Scophthalmus Maximus L). Algal Res. 41, 101–540. https://doi.org/10.1016/j.algal.2019.101540 (2019).

    Google Scholar 

  50. Assan, D. et al. Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini review. Comp. Biochem. Physiol. B: Biochem. Mol. Biol. 257, 110653. https://doi.org/10.1016/j.cbpb.2021.110653 (2022).

    Google Scholar 

  51. Santigosa, E. et al. Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea Bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 282 (1–4), 68–74. https://doi.org/10.1016/j.aquaculture.2008.06.007 (2008).

    Google Scholar 

  52. Silva, F. C. P. et al. Influence of partial substitution of dietary fish meal on the activity of digestive enzymes in the intestinal brush border membrane of Gilthead sea bream, Sparus aurata and goldfish. Carassius Auratus Aquaculture. 306 (1–4), 233–237. https://doi.org/10.1016/j.aquaculture.2010.05.018 (2010).

    Google Scholar 

  53. Hornbuckle, W. E., Simpson, K. W. & Tennant, B. C. Chap. 14 - Gastrointestinal Function. Clinical Biochemistry of Domestic Animals (Sixth Edition), 413–457. (2008). https://doi.org/10.1016/B978-0-12-370491-7.00014-3.

  54. Tampou, A. et al. Growth performance of Gilthead sea Bream (Sparus aurata) fed a mixture of single cell ingredients for organic diets. Aquaculture Rep. 36, 102105. https://doi.org/10.1016/j.aqrep.2024.102105 (2024).

    Google Scholar 

  55. Solovyev, M., Kashinskaya, E. & Gisbert, E. A meta-analysis for assessing the contributions of trypsin and chymotrypsin as the two major endoproteases in protein hydrolysis in fish intestine. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 278, 111372. https://doi.org/10.1016/j.cbpa.2023.111372 (2023).

    Google Scholar 

  56. Omnes, M. H. et al. Influence of lupin and rapeseed meals on the integrity of the digestive tract organs in Gilthead seabream (Sparus aurata L.) and goldfish (Carassius auratus L.) juveniles. Aquacult. Nutr. 21 (2), 223–233. https://doi.org/10.1111/anu.12162 (2015).

    Google Scholar 

  57. Araújo, M. et al. Dietary inclusion of IMTA-cultivated Gracilaria vermiculophylla in rainbow trout (Oncorhynchus mykiss) diets: effects on growth, intestinal morphology, tissue pigmentation, and immunological response. J. Appl. Phycol. 28 (1), 679–689. https://doi.org/10.1007/s10811-015-0591-8 (2016).

    Google Scholar 

  58. Wang, Y. et al. Effects of dietary supplement of Schizochytrium meal on growth, fatty acid profile and activities of digestive enzymes in turbot (Scophthalmus Maximus L.) larvae. Pakistan J. Zool. 55 (5), 2417–2426. https://doi.org/10.17582/journal.pjz/20220401080451 (2022).

    Google Scholar 

  59. Fonseca, F. et al. From invasion to fish fodder: inclusion of the brown algae Rugulopteryx Okamurae in Aquafeeds for European sea bass Dicentrarchus labrax (L., 1758). Aquaculture 568, 739318. https://doi.org/10.1016/j.aquaculture.2023.739318 (2023).

    Google Scholar 

  60. Fuentes, J. et al. High plant protein diet impairs growth performance and intestinal integrity in greater Amberjack (Seriola dumerili): molecular and physiological insights. Aquaculture 597, 741925. https://doi.org/10.1016/j.aquaculture.2024.741925 (2025).

    Google Scholar 

  61. de Rodrigáñez, M. A. S., Fuentes, J., Moyano, F. J. & Ribeiro, L. In vitro evaluation of the effect of a high plant protein diet and nucleotide supplementation on intestinal integrity in meagre (Argyrosomus regius). Fish Physiol. Biochem. 39, 1365–1370. https://doi.org/10.1007/s10695-013-9790-x (2013).

    Google Scholar 

  62. Caderno, A. et al. Microalgae-derived feed additives improve physiological health, intestinal integrity, and welfare in juvenile Gilthead seabream (Sparus aurata) fed plant-based diets. Aquaculture 609, 742873. https://doi.org/10.1016/j.aquaculture.2025.742873 (2025).

    Google Scholar 

  63. Van Itallie, C. M. & Anderson, J. M. Claudin interactions in and out of the tight junction. Tissue Barriers. 1 (3), e25247. https://doi.org/10.4161/tisb.25247 (2013).

    Google Scholar 

  64. Curry, J. N., Tokuda, S., McAnulty, P. & Yu, A. S. L. Combinatorial expression of claudins in the proximal renal tubule and its functional consequences. Am. J. Physiology-Renal Physiol. 318 (5), F1138–F1146. https://doi.org/10.1152/ajprenal.00057.2019 (2020).

    Google Scholar 

  65. Chasiotis, H. & Kelly, S. P. Occludin immunolocalization and protein expression in goldfish. J. Eperimental Biology. 211 (10), 1524–1534. https://doi.org/10.1242/jeb.014894 (2008).

    Google Scholar 

  66. Much, M. W., Walsh-Reitz, M. M. & Chang, E. B. Roles of ZO-1, occludin, and actin in oxidant-induced barrier disruption. Am. J. Physiol. 290 (2), G222–G231. https://doi.org/10.1152/ajpgi.00301.2005 (2006).

Download references

Acknowledgements

The authors acknowledge the support of the University of Almeria (Experimental feeds Service, grant EQC2019-006380-P) on aquafeed elaboration.

Funding

The authors acknowledge the support of the University of Almeria (Experimental feeds Service, grant EQC2019-006380-P) on aquafeed elaboration. The collaboration of LifeBioencapsulation S.L. was supported by European Union’s Horizon 2020 research and innovation programme under grant agreement No. 101036768 (NeoGiANT project). This study was also co-founded by ALGAE4FISH CEI·MAR Research Project granted to the spin-off LifeBioencapsulation S.L. (Convocatoria de Proyectos de Innovación Empresarial con Proyección Territorial 2018), the knowledge transfer action grant # 5917 from Junta de Andalucía (Spain), and received support from the Portuguese node of EMBRC-ERIC, specifically EMBRC.PT ALG-01-0145-FEDER-022121 and funding from the European Union’s Horizon 2020 research and innovation programme through project Assemble Plus under grant agreement No. 730984 to André Barany and Juan Antonio Martos-Sitcha.

Author information

Author notes
  1. A. Barany

    Present address: Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, Madrid, 28040, Spain

Authors and Affiliations

  1. Departamento de Biología y Geología, Escuela Superior de Ingeniería, CEI·MAR-Universidad de Almería, La Cañada de San Urbano, Almería, 04120, Spain

    Alba Galafat, M. I. Sáez, A. J. Vizcaíno, T. F. Martínez & F. J. Alarcón-López

  2. Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Campus de Excelencia Internacional del Mar (CEI-MAR), Instituto Universitario de Investigación Marina (INMAR), University of Cádiz, Puerto Real, Cádiz, 11519, Spain

    A. Barany, D. Sánchez-Ruiz & J. A. Martos-Sitcha

  3. Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Puerto Real, Cádiz, 11519, Spain

    E. Perera & J. Fuentes

  4. LifeBioencapsulation S.L, Parque Científico PITA, El Alquián, Almería, 04131, Spain

    F. J. Alarcón-López

Authors
  1. Alba Galafat
    View author publications

    Search author on:PubMed Google Scholar

  2. M. I. Sáez
    View author publications

    Search author on:PubMed Google Scholar

  3. A. J. Vizcaíno
    View author publications

    Search author on:PubMed Google Scholar

  4. A. Barany
    View author publications

    Search author on:PubMed Google Scholar

  5. E. Perera
    View author publications

    Search author on:PubMed Google Scholar

  6. D. Sánchez-Ruiz
    View author publications

    Search author on:PubMed Google Scholar

  7. T. F. Martínez
    View author publications

    Search author on:PubMed Google Scholar

  8. J. Fuentes
    View author publications

    Search author on:PubMed Google Scholar

  9. J. A. Martos-Sitcha
    View author publications

    Search author on:PubMed Google Scholar

  10. F. J. Alarcón-López
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A. Galafat, E. Perera., J. Fuentes and D. Sánchez conducted the experiments and performed data curation. MI. Sáez, AJ. Vizcaíno, J. Fuentes and A. Barany also performed data curation. Mi Sáez, T. Martínez, F.J. Alarcón-López, and J.A. Martos-Sitcha designed the research. A. Galafat wrote the original draft. All authors reviewed the manuscript. A. Barany, J.A. Martos-Sitcha, and F.J. Alarcón-López were responsible for funding acquisition.

Corresponding author

Correspondence to Alba Galafat.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galafat, A., Sáez, M.I., Vizcaíno, A.J. et al. Assessment of low dietary inclusion of nutraceuticals derived from microalgae to enhance intestinal function in gilthead seabream (Sparus aurata) juveniles. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36087-z

Download citation

  • Received: 05 February 2025

  • Accepted: 09 January 2026

  • Published: 15 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36087-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Digestive enzymes
  • Electrophysiology
  • Functional ingredient
  • Gene expression
  • Intestinal mucosa
  • Microalgae
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing