Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Temporal order of activations and interactions during arithmetic calculations measured by intracranial electrophysiological recordings in the human brain
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

Temporal order of activations and interactions during arithmetic calculations measured by intracranial electrophysiological recordings in the human brain

  • M. Kalinova1,
  • B. Kerkova1,2,
  • A. Kalina1,
  • V. Pytelova1,
  • J. Amlerova1,
  • R. Janca3,
  • P. Jezdik3,
  • D. Krysl1,
  • M. Kudr4,
  • P. Krsek4,
  • P. Marusic1 na1 &
  • …
  • J. Hammer1 na1 

Scientific Reports , Article number:  (2026) Cite this article

  • 699 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Neurology
  • Neuroscience

Abstract

Arithmetic requires complex and fast processes orchestrated within a large-scale network spanning multiple brain regions. However, reports on the network’s temporal dynamics are scarce. Here, we present data from intracranial EEG (iEEG) of 20 subjects (epilepsy surgery candidates) performing a sequential three-operand arithmetic task. Utilizing the high temporal and spatial resolution of iEEG, we analysed changes in high-gamma band (HGB; 52–120 Hz) activity and functional connectivity assessed by phase-locking value (PLV) in the delta (0.1–3 Hz) and theta (3–7 Hz) frequency bands. Strong and transient HGB activations peaked first in the ventral occipito-temporal cortex, followed by a more gradual increase in the lateral parietal, sensorimotor, and frontal cortices, accompanied by deactivations in default mode network areas. The connectivity patterns were more extensive during calculation than number recognition, with the theta PLV peaking ~ 150 ms earlier than the delta PLV. Earliest connectivity appeared, surprisingly, between ventral temporal and frontal regions at ~ 100–200 ms, evolving into a robust pattern among key network nodes at ~ 200–400 ms after the presentation of each operand. The presented results elucidate information flow within the putative arithmetic network during calculation in the human brain, offering high-temporal-resolution insights into its functional architecture.

Data availability

The raw iEEG data that support the findings of this study are publicly available (https://zenodo.org/records/16778665) https://zenodo.org/records/18245516. Further data are available from the corresponding authors upon reasonable request.

Code availability

Code is publicly available for the iEEG data analysis (https://github.com/JiriHammer/SEEG_dataAnalysis).

References

  1. Menon, V. Arithmetic in the child and adult brain. in The Oxford Handbook of Numerical Cognition 502–530 (Oxford University Press, Oxford, United Kingdom, (2016).

    Google Scholar 

  2. Arsalidou, M. & Taylor, M. J. Is 2 + 2 = 4? Meta-analyses of brain areas needed for numbers and calculations. NeuroImage 54, 2382–2393 (2011).

    Google Scholar 

  3. Pinheiro-Chagas, P., Sava-Segal, C., Akkol, S., Daitch, A. & Parvizi, J. Spatiotemporal dynamics of successive activations across the human brain during simple arithmetic processing. J. Neurosci. e2118222024. https://doi.org/10.1523/JNEUROSCI.2118-22.2024 (2024).

  4. Shum, J. et al. A brain area for visual numerals. J. Neurosci. 33, 6709–6715 (2013).

    Google Scholar 

  5. Yeo, D. J., Wilkey, E. D. & Price, G. R. The search for the number form area: A functional neuroimaging meta-analysis. Neurosci. Biobehav Rev. 78, 145–160 (2017).

    Google Scholar 

  6. Daitch, A. L. et al. Mapping human Temporal and parietal neuronal population activity and functional coupling during mathematical cognition. Proc. Natl. Acad. Sci. 113, E7277–E7286 (2016).

    Google Scholar 

  7. Grotheer, M., Jeska, B. & Grill-Spector, K. A preference for mathematical processing outweighs the selectivity for Arabic numbers in the inferior Temporal gyrus. NeuroImage 175, 188–200 (2018).

    Google Scholar 

  8. Grabner, R. H. et al. To retrieve or to calculate? Left angular gyrus mediates the retrieval of arithmetic facts during problem solving. Neuropsychologia 47, 604–608 (2009).

    Google Scholar 

  9. Istomina, A. & Arsalidou, M. Add, Subtract and multiply: Meta-analyses of brain correlates of arithmetic operations in children and adults. Dev. Cogn. Neurosci. 69, 101419 (2024).

    Google Scholar 

  10. Faye, A. et al. Numerical cognition: A meta-analysis of neuroimaging, transcranial magnetic stimulation and brain-damaged patients studies. NeuroImage Clin. 24, 102053 (2019).

    Google Scholar 

  11. Dehaene, S., Piazza, M., Pinel, P. & Cohen, L. Three parietal circuits for number processing. Cogn. Neuropsychol. 20, 487–506 (2003).

    Google Scholar 

  12. Chiou, R., Margulies, D., Soltanlou, M., Jefferies, E. & Kadosh, R. C. Semantic cognition versus numerical cognition: a topographical perspective. Trends Cogn. Sci. 27, 993–995 (2023).

    Google Scholar 

  13. Sokolowski, H. M., Hawes, Z., Peters, L. & Ansari, D. Symbols are special: an fMRI adaptation study of Symbolic, Nonsymbolic, and Non-Numerical magnitude processing in the human brain. Cereb. Cortex Commun. 2, tgab048 (2021).

    Google Scholar 

  14. Cohen Kadosh, R. & Walsh, V. Numerical representation in the parietal lobes: abstract or not abstract? Behav. Brain Sci. 32, 313–328 (2009). discussion 328–373.

    Google Scholar 

  15. Ashcraft, M. H. Cognitive arithmetic: A review of data and theory. Cognition 44, 75–106 (1992).

    Google Scholar 

  16. Prado, J., Mutreja, R. & Booth, J. R. Developmental dissociation in the neural responses to simple multiplication and Subtraction problems. Dev. Sci. 17, 537–552 (2014).

    Google Scholar 

  17. Díaz-Barriga Yáñez, A. et al. Neural evidence for procedural automatization during cognitive development: intraparietal response to changes in very-small addition problem-size increases with age. Dev. Cogn. Neurosci. 64, 101310 (2023).

    Google Scholar 

  18. Uittenhove, K., Thevenot, C. & Barrouillet, P. Fast automated counting procedures in addition problem solving: when are they used and why are they mistaken for retrieval? Cognition 146, 289–303 (2016).

    Google Scholar 

  19. Sokolowski, H. M., Matejko, A. A. & Ansari, D. The role of the angular gyrus in arithmetic processing: a literature review. Brain Struct. Funct. 228, 293–304 (2023).

    Google Scholar 

  20. Sokolowski, H. M., Hawes, Z. & Ansari, D. The neural correlates of retrieval and procedural strategies in mental arithmetic: A functional neuroimaging meta-analysis. Hum. Brain Mapp. 44, 229–244 (2023).

    Google Scholar 

  21. Das, A. & Menon, V. Causal dynamics and information flow in parietal-temporal-hippocampal circuits during mental arithmetic revealed by high-temporal resolution human intracranial EEG. Cortex 147, 24–40 (2022).

    Google Scholar 

  22. Hickendorff, M., Torbeyns, J. & Verschaffel, L. Multi-digit Addition, Subtraction, Multiplication, and division strategies. in International Handbook of Mathematical Learning Difficulties (eds Fritz, A., Haase, V. G. & Räsänen, P.) 543–560 (Springer International Publishing, Cham, 2019). https://doi.org/10.1007/978-3-319-97148-3_32.

    Google Scholar 

  23. Barrouillet, P., Mignon, M. & Thevenot, C. Strategies in Subtraction problem solving in children. J. Exp. Child. Psychol. 99, 233–251 (2008).

    Google Scholar 

  24. Imbo, I., Vandierendonck, A. & De Rammelaere, S. The role of working memory in the carry operation of mental arithmetic: number and value of the carry. Q. J. Exp. Psychol. 60, 708–731 (2007).

    Google Scholar 

  25. Klein, E. et al. Categorical and continuous - disentangling the neural correlates of the carry effect in multi-digit addition. Behav. Brain Funct. 6, 70 (2010).

    Google Scholar 

  26. Sokolowski, H. M., Fias, W., Mousa, A. & Ansari, D. Common and distinct brain regions in both parietal and frontal cortex support symbolic and nonsymbolic number processing in humans: A functional neuroimaging meta-analysis. NeuroImage 146, 376–394 (2017).

    Google Scholar 

  27. Skagenholt, M., Träff, U., Västfjäll, D. & Skagerlund, K. Examining the triple code model in numerical cognition: an fMRI study. PLoS ONE. 13, 1–35 (2018).

    Google Scholar 

  28. Pinheiro-Chagas, P., Daitch, A., Parvizi, J. & Dehaene, S. Brain mechanisms of arithmetic: A crucial role for ventral Temporal cortex. J. Cogn. Neurosci. 30, 1757–1772 (2018).

    Google Scholar 

  29. Knops, A., Thirion, B., Hubbard, E. M., Michel, V. & Dehaene, S. Recruitment of an area involved in eye movements during mental arithmetic. Science 324, 1583–1585 (2009).

    Google Scholar 

  30. Iguchi, Y. & Hashimoto, I. Sequential information processing during a mental arithmetic is reflected in the time course of event-related brain potentials. Clin. Neurophysiol. (2000).

  31. Ku, Y., Hong, B., Gao, X. & Gao, S. Spectra-temporal patterns underlying mental addition: an ERP and ERD/ERS study. Neurosci. Lett. 472, 5–10 (2010).

    Google Scholar 

  32. Hinault, T. & Lemaire, P. What does EEG tell Us about arithmetic strategies? A review. Int. J. Psychophysiol. 106, 115–126 (2016).

    Google Scholar 

  33. Pinheiro-Chagas, P., Piazza, M. & Dehaene, S. Decoding the processing stages of mental arithmetic with magnetoencephalography. Cortex 114, 124–139 (2019).

    Google Scholar 

  34. Vansteensel, M. J. et al. Spatiotemporal characteristics of electrocortical brain activity during mental calculation. Hum. Brain Mapp. 35, 5903–5920 (2014).

    Google Scholar 

  35. Hermes, D. et al. Electrophysiological responses in the ventral Temporal cortex during reading of numerals and calculation. Cereb. Cortex. 27, 567–575 (2017).

    Google Scholar 

  36. Park, J., Hebrank, A., Polk, T. A. & Park, D. C. Neural dissociation of number from letter recognition and its relationship to parietal numerical processing. J. Cogn. Neurosci. 24, 39–50 (2012).

    Google Scholar 

  37. Rosenberg-Lee, M., Chang, T. T., Young, C. B., Wu, S. & Menon, V. Functional dissociations between four basic arithmetic operations in the human posterior parietal cortex: A cytoarchitectonic mapping study. Neuropsychologia 49, 2592–2608 (2011).

    Google Scholar 

  38. Moeller, K., Willmes, K. & Klein, E. A review on functional and structural brain connectivity in numerical cognition. Front. Hum. Neurosci 9 (2015).

  39. Manning, J. R., Jacobs, J., Fried, I. & Kahana, M. J. Broadband shifts in local field potential power spectra are correlated with single-neuron spiking in humans. J. Neurosci. 29, 13613–13620 (2009).

    Google Scholar 

  40. Lachaux, J. P., Axmacher, N., Mormann, F., Halgren, E. & Crone, N. E. High-frequency neural activity and human cognition: Past, present and possible future of intracranial EEG research. Prog Neurobiol. 98, 279–301 (2012).

    Google Scholar 

  41. Logothetis, N. K. What we can do and what we cannot do with fMRI. Nature 453, 869–878 (2008).

    Google Scholar 

  42. Pinheiro-Chagas, P., Chen, F., Sabetfakhri, N., Perry, C. & Parvizi, J. Direct intracranial recordings in the human angular gyrus during arithmetic processing. Brain Struct. Funct. 228, 305–319 (2023).

    Google Scholar 

  43. Crone, N. Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121, 2301–2315 (1998).

    Google Scholar 

  44. Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–208 (1999).

    Google Scholar 

  45. Fell, J. & Axmacher, N. The role of phase synchronization in memory processes. Nat. Rev. Neurosci. 12, 105–118 (2011).

    Google Scholar 

  46. Varela, F., Lachaux, J. P., Rodriguez, E. & Martinerie, J. The brainweb: phase synchronization and large-scale integration. Nat. Rev. Neurosci. 2, 229–239 (2001).

    Google Scholar 

  47. Bourdillon, P. et al. Brain-scale cortico-cortical functional connectivity in the delta-theta band is a robust signature of conscious states: an intracranial and scalp EEG study. Sci. Rep. 10, 14037 (2020).

    Google Scholar 

  48. Hammer, J. et al. Antagonistic behavior of brain networks mediated by low-frequency oscillations: electrophysiological dynamics during internal–external attention switching. Commun. Biol. 7, 1105 (2024).

    Google Scholar 

  49. Moraresku, S. et al. Neural dynamics of visual stream interactions during memory-guided actions investigated by intracranial EEG. Neurosci. Bull. https://doi.org/10.1007/s12264-025-01371-x (2025).

    Google Scholar 

  50. Solomon, E. A. et al. Dynamic theta networks in the human medial Temporal lobe support episodic memory. Curr. Biol. 29, 1100–1111e4 (2019).

    Google Scholar 

  51. Dowker, A. The componential nature of arithmetical cognition: some important questions. Front. Psychol. 14, 1188271 (2023).

    Google Scholar 

  52. Peters, L. & Smedt, B. D. Arithmetic in the developing brain: A review of brain imaging studies. Dev. Cogn. Neurosci. 30, 265–279 (2018).

    Google Scholar 

  53. Harvey, B. M. & Dumoulin, S. O. A network of topographic numerosity maps in human association cortex. Nat. Hum. Behav. 1, 0036 (2017).

    Google Scholar 

  54. Andres, M., Pelgrims, B., Michaux, N., Olivier, E. & Pesenti, M. Role of distinct parietal areas in arithmetic: an fMRI-guided TMS study. NeuroImage 54, 3048–3056 (2011).

    Google Scholar 

  55. Foster, B. L., Rangarajan, V., Shirer, W. R. & Parvizi, J. Intrinsic and Task-Dependent coupling of neuronal population activity in human parietal cortex. Neuron 86, 578–590 (2015).

    Google Scholar 

  56. Grotheer, M., Ambrus, G. G. & Kovács, G. Causal evidence of the involvement of the number form area in the visual detection of numbers and letters. NeuroImage 132, 314–319 (2016).

    Google Scholar 

  57. Rickard, T. C. et al. The calculating brain: an fMRI study. Neuropsychologia 38, 325–335 (2000).

    Google Scholar 

  58. Dehaene, S. Varieties of numerical abilities. Cognition 44, 1–42 (1992).

    Google Scholar 

  59. Kucyi, A. et al. Electrophysiological dynamics of antagonistic brain networks reflect attentional fluctuations. Nat. Commun. 11, 325 (2020).

    Google Scholar 

  60. Iacovella, V., Faes, L. & Hasson, U. Task-induced deactivation in diverse brain systems correlates with interindividual differences in distinct autonomic indices. Neuropsychologia 113, 29–42 (2018).

    Google Scholar 

  61. Pruessner, J. C. et al. Deactivation of the limbic system during acute psychosocial stress: evidence from positron emission tomography and functional magnetic resonance imaging studies. Biol. Psychiatry. 63, 234–240 (2008).

    Google Scholar 

  62. Meltzer, J. A., Negishi, M., Mayes, L. C. & Constable, R. T. Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin. Neurophysiol. Off J. Int. Fed. Clin. Neurophysiol. 118, 2419–2436 (2007).

    Google Scholar 

  63. Parvizi, J. & Kastner, S. Promises and limitations of human intracranial electroencephalography. Nat. Neurosci. 21, 474–483 (2018).

    Google Scholar 

  64. Pidnebesna, A. et al. Tackling the challenges of group network inference from intracranial EEG data. Front. Neurosci. 16, 1061867 (2022).

    Google Scholar 

  65. Bastos, A. M. & Schoffelen, J. M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front. Syst. Neurosci. 9, 175 (2016).

    Google Scholar 

  66. Leong, A. T. L. et al. Long-range projections coordinate distributed brain-wide neural activity with a specific spatiotemporal profile. Proc. Natl. Acad. Sci. 113, E8306–E8315 (2016).

    Google Scholar 

  67. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006).

    Google Scholar 

  68. Fries, P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn. Sci. 9, 474–480 (2005).

    Google Scholar 

  69. Muthukumaraswamy, S. D. & Singh, K. D. A cautionary note on the interpretation of phase-locking estimates with concurrent changes in power. Clin. Neurophysiol. 122, 2324–2325 (2011).

    Google Scholar 

  70. Kleiner, M., Brainard, D. & Pelli, D. What’s new in psychtoolbox-3. Percept 36 ECVP Abstr Suppl 1–16 (2007).

  71. Gunia, A. et al. The brain dynamics of visuospatial perspective-taking captured by intracranial EEG. NeuroImage 285, 120487 (2024).

    Google Scholar 

  72. Moraresku, S. et al. Timing of allocentric and egocentric Spatial processing in human intracranial EEG. Brain Topogr. 36, 870–889 (2023).

    Google Scholar 

  73. Vlcek, K. et al. Mapping the scene and object processing networks by intracranial EEG. Front. Hum. Neurosci. 14, 561399 (2020).

    Google Scholar 

  74. Janca, R. et al. Detection of interictal epileptiform discharges using signal envelope distribution modelling: application to epileptic and Non-Epileptic intracranial recordings. Brain Topogr. 28, 172–183 (2015).

    Google Scholar 

  75. Janca, R. et al. Automated identification of stereoelectroencephalography contacts and measurement of factors influencing accuracy of frame stereotaxy. IEEE J. Biomed. Health Inf. 27, 3326–3336 (2023).

    Google Scholar 

  76. Mai, J. K., Majtanik, M. & Paxinos, G. Atlas of the Human Brain (Elsevier Science, 2015).

  77. Eickhoff, S. B. et al. A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage 25, 1325–1335 (2005).

    Google Scholar 

  78. Kalina, A., Jezdik, P., Fabera, P., Marusic, P. & Hammer, J. Electrical source imaging of somatosensory evoked potentials from intracranial EEG signals. Brain Topogr. 36, 835–853 (2023).

    Google Scholar 

  79. Price, G. R. & Ansari, D. Symbol processing in the left angular gyrus: evidence from passive perception of digits. NeuroImage 57, 1205–1211 (2011).

    Google Scholar 

  80. Simon, O., Mangin, J. F., Cohen, L., Bihan, D. L. & Dehaene, S. Topographical layout of Hand, Eye, Calculation, and Language-Related areas in the human parietal lobe. Neuron 33, 475–487 (2002).

    Google Scholar 

  81. Sixtus, E., Krause, F., Lindemann, O. & Fischer, M. H. A sensorimotor perspective on numerical cognition. Trends Cogn. Sci. 27, 367–378 (2023).

    Google Scholar 

  82. Park, J., Park, D. C. & Polk, T. A. Parietal functional connectivity in numerical cognition. Cereb. Cortex. 23, 2127–2135 (2013).

    Google Scholar 

  83. Ueda, K., Brown, E. C., Kojima, K., Juhász, C. & Asano, E. Mapping mental calculation systems with electrocorticography. Clin. Neurophysiol. 126, 39–46 (2015).

    Google Scholar 

  84. Miller, K. J., Sorensen, L. B., Ojemann, J. G. & den Nijs, M. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 5, e1000609 (2009).

    Google Scholar 

  85. Jiang, H. et al. Theta oscillations rapidly convey Odor-Specific content in human piriform cortex. Neuron 94, 207–219e4 (2017).

    Google Scholar 

  86. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  87. Kawashima, R. et al. A functional MRI study of simple arithmetic—a comparison between children and adults. Cogn. Brain Res. 18, 227–233 (2004).

    Google Scholar 

  88. Molko, N. et al. Functional and structural alterations of the intraparietal sulcus in a developmental dyscalculia of genetic origin. Neuron 40, 847–858 (2003).

    Google Scholar 

  89. Foster, B. L., Dastjerdi, M. & Parvizi, J. Neural populations in human posteromedial cortex display opposing responses during memory and numerical processing. Proc. Natl. Acad. Sci. 109, 15514–15519 (2012).

  90. Mercier, M. R. et al. Advances in human intracranial electroencephalography research, guidelines and good practices. NeuroImage 260, 119438 (2022).

    Google Scholar 

  91. Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents — EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    Google Scholar 

Download references

Acknowledgements

Motol University Hospital is a full member of ERN EpiCARE. All authors are members of the Epilepsy Research Centre Prague - EpiReC consortium. The authors would like to thank the patients for their participation in this study and CESNET for access to their data storage facility.

Funding

The research was supported by ERDF-Project Brain Dynamics, No. CZ.02.01.01/00/22_008/0004643, and Grant Agency of Charles University (GA UK, Grant No. 272221).

Author information

Author notes
  1. P. Marusic and J. Hammer are joint last authors.

Authors and Affiliations

  1. Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic

    M. Kalinova, B. Kerkova, A. Kalina, V. Pytelova, J. Amlerova, D. Krysl, P. Marusic & J. Hammer

  2. National Institute of Mental Health, Klecany, Czech Republic

    B. Kerkova

  3. Department of Circuit Theory, Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic

    R. Janca & P. Jezdik

  4. Department of Pediatric Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic

    M. Kudr & P. Krsek

Authors
  1. M. Kalinova
    View author publications

    Search author on:PubMed Google Scholar

  2. B. Kerkova
    View author publications

    Search author on:PubMed Google Scholar

  3. A. Kalina
    View author publications

    Search author on:PubMed Google Scholar

  4. V. Pytelova
    View author publications

    Search author on:PubMed Google Scholar

  5. J. Amlerova
    View author publications

    Search author on:PubMed Google Scholar

  6. R. Janca
    View author publications

    Search author on:PubMed Google Scholar

  7. P. Jezdik
    View author publications

    Search author on:PubMed Google Scholar

  8. D. Krysl
    View author publications

    Search author on:PubMed Google Scholar

  9. M. Kudr
    View author publications

    Search author on:PubMed Google Scholar

  10. P. Krsek
    View author publications

    Search author on:PubMed Google Scholar

  11. P. Marusic
    View author publications

    Search author on:PubMed Google Scholar

  12. J. Hammer
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.K.: Methodology, investigation, formal analysis, writing—original draft, visualization. A.K.: Investigation, data curation, writing—review & editing. B.K.: Writing—review & editing. V.P.: Investigation, writing—review & editing. J.A.: Writing—review & editing. R.J.: Methodology, writing—review & editing. P.J.: Data curation. D.K.: Investigation, data curation. M.K.: Investigation, writing—review & editing. P.K.: Investigation, writing—review & editing. P.M.: Conceptualization, resources, writing—review & editing, supervision, funding acquisition. J.H.: Conceptualization, methodology, investigation, formal analysis, writing – original draft, visualization, supervision, funding acquisition.

Corresponding authors

Correspondence to M. Kalinova or P. Marusic.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinova, M., Kerkova, B., Kalina, A. et al. Temporal order of activations and interactions during arithmetic calculations measured by intracranial electrophysiological recordings in the human brain. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36122-z

Download citation

  • Received: 31 July 2025

  • Accepted: 09 January 2026

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36122-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Brain network dynamics
  • Intracranial electroencephalography (iEEG)
  • Numerical cognition
  • Functional connectivity
  • High-gamma band activity (HGB)
  • Phase-locking value (PLV)
Download PDF

Associated content

Collection

Numerical cognition

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing