Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Towards standardisation of zinc slag as a sustainable fine aggregate substitute in concrete
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Towards standardisation of zinc slag as a sustainable fine aggregate substitute in concrete

  • Jun Chul Yoon1 na1,
  • Kadepalli Nagendra Shivaprasad2 na1,
  • Tae Beom Min3,
  • Woo Jin Lee4,
  • Jeong Min Na3,
  • Hyun Min Yang5 &
  • …
  • Sanghyo Lee5 

Scientific Reports , Article number:  (2026) Cite this article

  • 385 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Engineering
  • Environmental sciences
  • Materials science

Abstract

In the construction industry, a huge demand for alternative construction materials has driven interest in industrial by-products as substitutes for natural aggregates. The present study evaluates zinc slag (ZS) as a partial to full replacement for natural sand in normal and high strength concrete. Zinc slag was characterised for physical, chemical, particle size distribution, density, water absorption, hazardous element content and leaching potential. Furthermore, comprehensive experimental evaluation of fresh properties, compressive strength, dry shrinkage and carbonation resistance was conducted for concrete mixes with 0-100% ZS replacement of fine aggregates in accordance with relevant standards. The results demonstrated that zinc slag exhibits favourable properties with reduced water demand of 9 to 16 kg/m3. Compressive strength increased by up to 8% (from 31.2 MPa reference normal strength concrete) and 6% (from 52.4 MPa reference high strength concrete) at 28 days across 0-100% ZS replacement levels. Dry shrinkage found to be less than − 600 µɛ for all ZS replacement irrespective of concrete grade and in the range of control mixes. Carbonation depth and air content remained within acceptable limits, and alkali silica reactivity was negligible. These findings indicate that zinc slag can be a sustainable and effective alternative to fine aggregate in wide range of applications in the construction industry. The study contributes critical data needed for the potential inclusion of ZS as a fine aggregate in the upcoming revision of construction material standards.

Data availability

All the data supporting this study are presented within the manuscript in the form of figures and tables.

References

  1. Torres, A. et al. Sustainability of the global sand system in the anthropocene. One Earth. 4, 639–650. https://doi.org/10.1016/j.oneear.2021.04.011 (2021).

    Google Scholar 

  2. Gavriletea, M. D. & Environmental impacts of sand exploitation. Anal. Sand Market Sustain. 9 1118. https://doi.org/10.3390/SU9071118 (2017).

  3. Bendixen, M. et al. Sand, gravel, and UN sustainable development goals: Conflicts, synergies, and pathways forward. One Earth. 4, 1095–1111. https://doi.org/10.1016/j.oneear.2021.07.008 (2021).

    Google Scholar 

  4. Collivignarelli, M. C. et al. The production of sustainable concrete with the use of alternative aggregates: a review. Sustainability 12 7903. https://doi.org/10.3390/SU12197903 (2020).

  5. Dash, M. K., Patro, S. K. & Rath, A. K. Sustainable use of industrial-waste as partial replacement of fine aggregate for Preparation of concrete – A review. Int. J. Sustain. Built Environ. 5, 484–516. https://doi.org/10.1016/J.IJSBE.2016.04.006 (2016).

    Google Scholar 

  6. Mohanta, N. R. & Murmu, M. Alternative coarse aggregate for sustainable and eco-friendly concrete - A review. J. Build. Eng. 59, 105079. https://doi.org/10.1016/J.JOBE.2022.105079 (2022).

    Google Scholar 

  7. Deng, Z. Influence of recycled rubber and glass aggregates on magnesium sulfate resistance of geopolymers: Physio-mechanical properties and mechanisms. Constr. Build. Mater. 438, 137134. https://doi.org/10.1016/J.CONBUILDMAT.2024.137134 (2024).

    Google Scholar 

  8. Mohanta, N. R. & Murmu, M. A review on the utilization of steel slag as alternative coarse aggregate in concrete: transforming waste into wealth. Iran. J. Sci. Technol. Trans. Civ. Eng. 2025, 1–36. https://doi.org/10.1007/S40996-025-01981-5 (2025).

    Google Scholar 

  9. Varadharajan, S., Kirthanashri, S. V., Samim, M., Shukla, B. K. & Bharti, G. A review on influence of replacing industrial wastes with fine aggregate in concrete. Lect Notes Civ. Eng. 281, 183–188. https://doi.org/10.1007/978-981-19-4731-5_16/FIGURES/4 (2023).

    Google Scholar 

  10. BIS 383. Specification for coarse and fine aggregates from natural sources for concrete. Bur. Indian Stand. Delhi 1–24. (2016).

  11. JIS JIS A 5011 slag aggregate for concrete. Japanese Ind. Stand. (2018).

  12. EN, EN 12620 Aggregates for concrete. Eur. Comm. Stand. (2013).

  13. ASTM. ASTM C33 Standard Specification for Concrete Aggregates (ASTM Int, 2023).

  14. KS, KS F 2527 Aggregate for concrete. (Korea Stand. Assoc., 2024).

  15. Kania, H. & Saternus, M. Evaluation and current state of primary and secondary zinc production—a review. Appl. Sci. 13 2003. https://doi.org/10.3390/APP13032003 (2023).

  16. Chen, W., Dai, Y., Liu, Z. & Zhang, H. The evolution of global zinc trade network: patterns and implications. Resour. Policy. 90, 104727. https://doi.org/10.1016/J.RESOURPOL.2024.104727 (2024).

    Google Scholar 

  17. Park, H. S., Kim, T. Y. & Kim, D. Efficiency analysis of zinc refining companies. Sustainability 11 6528. https://doi.org/10.3390/SU11226528 (2019).

  18. Korea Zinc Secures Critical Metals Supply Chain Amid Global Export Controls. (Accessed 16 October 2025). https://www.prnewswire.com/news-releases/korea-zinc-secures-critical-metals-supply-chain-amid-global-export-controls-302369753.html.

  19. Korea Zinc’s hematite process named national core technology -. 매일경제 영문뉴스 펄스(Pulse). (Accessed 16 October 2025). https://pulse.mk.co.kr/news/english/11434925.

  20. Uppalwar, C. S., Thakur, A. N., Gujar, J. G. & Sonawane, S. S. Recovery of zinc from a variety of industrial wastes. Met. Value Recover. Ind. Waste Adv. Physicochem. Treat. Technol. 335–363. https://doi.org/10.1016/B978-0-443-21884-2.00009-5 (2025).

  21. Najera Ibarra, J. M. et al. Zinc extraction from primary lead smelting slags by oxidant alkaline leaching. Process 12 1409. https://doi.org/10.3390/PR12071409 (2024).

  22. Fan, C. L. et al. Disposal of zinc extraction residues via iron ore sintering process: an innovative resource utilization. J. Iron Steel Res. Int. 31, 1636–1645. https://doi.org/10.1007/S42243-023-01113-1/FIGURES/8 (2024).

    Google Scholar 

  23. Alwaeli, M. Application of granulated lead–zinc slag in concrete as an opportunity to save natural resources. Radiat. Phys. Chem. 83, 54–60. https://doi.org/10.1016/J.RADPHYSCHEM.2012.09.024 (2013).

    Google Scholar 

  24. Babu, V., Kabeer, K. I. S. A. & Vyas, A. K. A review on the characterization and use of ISF slag as fine aggregate in cement concrete. Mater. Today Proc. 65, 728–734. https://doi.org/10.1016/J.MATPR.2022.03.281 (2022).

    Google Scholar 

  25. Mosavinezhad, S. H. G. & Nabavi, S. E. Effect of 30% ground granulated blast Furnace, lead and zinc slags as sand replacements on the strength of concrete. KSCE J. Civ. Eng. 16, 989–993. https://doi.org/10.1007/S12205-012-1240-2 (2012).

    Google Scholar 

  26. Atzeni, C., Massidda, L. & Sanna, U. Use of granulated slag from lead and zinc processing in concrete technology. Cem. Concr Res. 26, 1381–1388. https://doi.org/10.1016/0008-8846(96)00121-4 (1996).

    Google Scholar 

  27. Alex, T. C. et al. Utilization of zinc slag through geopolymerization: influence of milling atmosphere. Int. J. Min. Process. 123, 102–107. https://doi.org/10.1016/J.MINPRO.2013.06.001 (2013).

    Google Scholar 

  28. Tripathi, B. & Chaudhary, S. Performance based evaluation of ISF slag as a substitute of natural sand in concrete. J. Clean. Prod. 112, 672–683. https://doi.org/10.1016/J.JCLEPRO.2015.07.120 (2016).

    Google Scholar 

  29. Leon Raj, J. & Chockalingam, T. Strength and abrasion characteristics of pervious concrete. Road. Mater. Pavement Des. 21, 2180–2197. https://doi.org/10.1080/14680629.2019.1596828 (2020).

    Google Scholar 

  30. Morrison, C. & Richardson, D. Re-use of zinc smelting furnace slag in concrete. Proc. Inst. Civ. Eng. - Eng. Sustain. 157, 213–218. https://doi.org/10.1680/ENSU.2004.157.4.213 (2004).

    Google Scholar 

  31. Weeks, C., Hand, R. J. & Sharp, J. H. Retardation of cement hydration caused by heavy metals present in ISF slag used as aggregate. Cem. Concr Compos. 30, 970–978. https://doi.org/10.1016/J.CEMCONCOMP.2008.07.005 (2008).

    Google Scholar 

  32. Saedi, A., Jamshidi-Zanjani, A., Darban, A. K., Mohseni, M. & Nejati, H. Utilization of lead–zinc mine tailings as cement substitutes in concrete construction: effect of sulfide content. J. Build. Eng. 57, 104865. https://doi.org/10.1016/J.JOBE.2022.104865 (2022).

    Google Scholar 

  33. Patil, S. B., Vyas, A. K., Gupta, A. B. & Patil, R. S. Imperial smelting furnace slag as fine aggregate in cement concrete mixes. J. Solid Waste Technol. Manag. 42, 128–136. https://doi.org/10.5276/JSWTM.2016.128 (2016).

    Google Scholar 

  34. Kore, S. D. & Slag performance of concrete mixes using marble waste and ISF. https://doi.org/10.23880/oajwx-16000139 (2020).

  35. Łaźniewska-Piekarczyk, B., Czop, M. & Rubin, J. A. The multifaceted comparison of effects of immobilisation of waste imperial smelting furnace (ISF) slag in calcium sulfoaluminates (CSA) and a geopolymer binder. Materials 17 3163. https://doi.org/10.3390/MA17133163 (2024).

  36. Bharti, G., Bharath, B., Tripathi, A., Sharma, P. K. & Shukla, B. K. Evaluation of industrial By-Products as partial fine aggregate replacements in concrete: A comparative analysis of ISF Slag, fly Ash, and Nanosilica, Intell. Infrastruct. Smart Mater. 115–133. https://doi.org/10.1007/978-3-031-92421-7_7 (2025).

  37. Singh, Y., Vyas, A. K. & Syed Ahmed Kabeer, K. I. Compressive strength evaluation of mortars containing ISF slag and marble powder. Mater. Today Proc. 4, 9635–9639. https://doi.org/10.1016/J.MATPR.2017.06.239 (2017).

    Google Scholar 

  38. Alwaeli, M. Use of granulated lead-zinc slag as replacement of fine aggregate in structural concrete: compressive strength and radiation shielding study. Arch. Civ. Eng. 67, 37–47. https://doi.org/10.24425/ace.2021.137153 (2021).

    Google Scholar 

  39. Kanneboina, Y. Y., Jothi Saravanan, T., Kabeer, K. I. S. A. & Bisht, K. Valorization of lead and zinc slags for the production of construction materials - A review for future research direction. Constr. Build. Mater. 367, 130314. https://doi.org/10.1016/J.CONBUILDMAT.2023.130314 (2023).

    Google Scholar 

  40. Li, J. et al. Geopolymer synthesized from electrolytic manganese residue and lead-zinc smelting slag: compressive strength and heavy metal immobilization. Cem. Concr Compos. 134, 104806. https://doi.org/10.1016/J.CEMCONCOMP.2022.104806 (2022).

    Google Scholar 

  41. Barbhuiya, S., Das, B. B., Norman, P. & Qureshi, T. A comprehensive review of radiation shielding concrete: Properties, design, evaluation, and applications. Struct. Concr. 26, 1809–1855. https://doi.org/10.1002/SUCO.202400519 (2025).

    Google Scholar 

  42. KS, K. S. F. 2545 Test method for potential alkali reactivity of aggregates (Chemical method). (Korea Stand. Assoc., 2022).

  43. ASTM C1260, Standard Test Method for Potential Alkali Reactivity of Aggregates. 1–5. (2021).

  44. National Institute of Environmental Research (NIER), Waste Process Test Standards, Incheon. https://www.law.go.kr/LSW/admRulInfoP.do?admRulSeq=2100000245210 (2024).

  45. National Institute of Environmental Research (NIER), Soil Contamination Process Test Standard. https://www.nier.go.kr (2022).

  46. Korean-Construction-Specification KCS 14 20 10 General Concrete. (Korea Constr. Stand. Cent., 2024).

  47. KS KS F 2402 test method for concrete slump. (Korea Stand. Assoc., 2022).

  48. KS & KS F. 2421 Standard test method for air content of fresh concrete by the pressure method (Air receiver method). (Korea Stand. Assoc., 2016).

  49. KS. KS F 2405 test method for compressive strength of concrete. (Korea Stand. Assoc., 2022).

  50. KS KS F 2424 standard test method for length change of mortar and concrete. (Korea Stand. Assoc., 2020).

  51. KS, KS F 2584 Standard test method for accelerated carbonation of concrete. (Korea Stand. Assoc., 2010).

  52. Gayathiri, K. & Praveenkumar, S. Retaining the particle packing approach and its application in developing the cement composites towards sustainability. J. Build. Pathol. Rehabil. 8, 1–17. https://doi.org/10.1007/S41024-023-00271-9/FIGURES/8 (2023).

    Google Scholar 

  53. Radulović, D. et al. Reapplication potential of historic Pb–Zn slag with regard to zero waste principles. Sustainability 16 720. https://doi.org/10.3390/SU16020720 (2024).

  54. Oustadakis, P., Tsakiridis, P. E., Katsiapi, A. & Agatzini-Leonardou, S. Hydrometallurgical process for zinc recovery from electric Arc furnace dust (EAFD): part I: characterization and leaching by diluted sulphuric acid. J. Hazard. Mater. 179, 1–7. https://doi.org/10.1016/J.JHAZMAT.2010.01.059 (2010).

    Google Scholar 

  55. Chen, D. T. et al. Speciation of toxic pollutants in Pb/Zn smelter slags by X-ray absorption spectroscopy in the context of the literature. J. Hazard. Mater. 460, 132373. https://doi.org/10.1016/J.JHAZMAT.2023.132373 (2023).

    Google Scholar 

  56. Huang, T. et al. Stabilization of cr 3 + using iron rich slag-derived phosphate cement: an integrated solution for heavy metals and hazardous solid wastes. https://doi.org/10.1016/j.cemconcomp.2025.106089 (2025).

  57. Nowinska, K. Mineralogical and chemical characteristics of slags from the pyrometallurgical extraction of zinc and lead. Minerial 10 371. https://doi.org/10.3390/MIN10040371 (2020).

  58. Zhang, D. et al. Mineral evolution mechanism of Zinc-slag during high-temperature reactive process. Mater. Today Commun. 36, 106784. https://doi.org/10.1016/J.MTCOMM.2023.106784 (2023).

    Google Scholar 

  59. Varadharajan, S. et al. Replacement of fine aggregate with imperial smelting furnace slag for manufacture of ecofriendly concrete AIP Conf. Proc. 2800. https://doi.org/10.1063/5.0163531/2910193 (2023).

  60. Kore, S. D. Performance evaluation of concrete mixtures using mining & industrial byproducts. Mater. Today Proc. https://doi.org/10.1016/J.MATPR.2023.02.363 (2023).

    Google Scholar 

  61. KS, KS F 2512 Standard test method for clay contained in aggregates. (Korea Stand. Assoc., 2012).

  62. KS, K. S. F. 2511 Particle amount in aggregate - Finer than 0.08 mm sieve - Test method. (Korea Stand. Assoc., 2022).

  63. ASTM, ASTM C123/C123M-14 standard test method for lightweight particles in aggregate. (ASTM Int, 2014).

  64. KS, KS F 2515 Standard test method for chloride content in aggregate. (Korea Stand. Assoc., 2019).

  65. KS, K. S. F. 2576 Standard test method for impurity contents of recycled aggregate. (Korea Stand. Assoc., 2020).

  66. Xu, D. M., Fu, R. B., Tong, Y. H., Shen, D. L. & Guo, X. P. The potential environmental risk implications of heavy metals based on their geochemical and mineralogical characteristics in the size-segregated zinc smelting slags. J. Clean. Prod. 315, 128199. https://doi.org/10.1016/J.JCLEPRO.2021.128199 (2021).

    Google Scholar 

  67. Nowińska, K. & Adamczyk, Z. Zinc and lead metallurgical slags as a potential source of metal recovery: A review. Mater. (Basel). 16, 7295. https://doi.org/10.3390/MA16237295 (2023).

    Google Scholar 

  68. Dimitrova, S. V. & Mehanjiev, D. R. Interaction of blast-furnace slag with heavy metal ions in water solutions. Water Res. 34, 1957–1961. https://doi.org/10.1016/S0043-1354(99)00328-0 (2000).

    Google Scholar 

  69. Hu, R., Xie, J., Wu, S., Yang, C. & Yang, D. Study of toxicity assessment of heavy metals from steel slag and its asphalt mixture. Mater. (Basel). 13, 2768. https://doi.org/10.3390/MA13122768 (2020).

    Google Scholar 

  70. Yang, R. et al. Properties and heavy metals immobilization mechanism of glass-ceramics derived from lead zinc slag and red mud. Chem. Eng. J. 508, 161156. https://doi.org/10.1016/J.CEJ.2025.161156 (2025).

    Google Scholar 

  71. Yang, H., Xu, Y., Shen, K., Qiu, Y. & Zhang, G. Removal of heavy metal ions from zinc hydrometallurgical wastewater using CaS-containing alkaline slag. J. Environ. Chem. Eng. 6, 6451–6456. https://doi.org/10.1016/J.JECE.2018.09.040 (2018).

    Google Scholar 

  72. Lange, D. A. et al. Performance and acceptance of self-consolidating concrete: final report, FHWA-ICT-08-020. (Accessed 20 October 2025). https://hdl.handle.net/2142/9686 (2008).

  73. Saremi, S. G., Goulias, D. G. & Akhter, A. A. Non-Destructive testing in quality assurance of concrete for assessing production uniformity. Transp. Res. Rec. 2677, 1259–1275. https://doi.org/10.1177/03611981221103871/ASSET/121B43D8-EAB1-48FD-9F4E-6FA4B8631CA5/ASSETS/IMAGES/LARGE/10.1177_03611981221103871-FIG11.JPG (2023).

    Google Scholar 

  74. Moreno Juez, J., Artoni, R. & Cazacliu, B. Monitoring of concrete mixing evolution using image analysis. Powder Technol. 305, 477–487. https://doi.org/10.1016/J.POWTEC.2016.10.008 (2017).

    Google Scholar 

  75. Bartos, P. Fresh concrete: properties and tests. (Accessed 20 October 2025). https://books.google.co.kr/books?hl=en&lr=%26id=uUcvBQAAQBAJ%26oi=fnd%26pg=PP1%26dq=In+the+hardened+state,+the+internal+uniformity+of+the+concrete+mixes+was+assessed+following+the+visual+evaluation+procedure%26ots=DpPts9oS5W%26sig=vRnjsNNQ1UqqoSkNH8iN3IHgN9c%26redir_es (1992).

  76. Roy, S., Miura, T., Nakamura, H. & Yamamoto, Y. Investigation on material stability of spherical shaped EAF slag fine aggregate concrete for pavement during thermal change. Constr. Build. Mater. 215, 862–874. https://doi.org/10.1016/J.CONBUILDMAT.2019.04.228 (2019).

    Google Scholar 

  77. Sun, J., Feng, J. & Chen, Z. Effect of ferronickel slag as fine aggregate on properties of concrete. Constr. Build. Mater. 206, 201–209. https://doi.org/10.1016/J.CONBUILDMAT.2019.01.187 (2019).

    Google Scholar 

  78. Azhagarsamy, S., Pannirselvam, N., Vanjinathan, J., Premkumar, R. & Vijayakumar, D. Optimizing mechanical and microstructural properties of concrete with steel slag aggregate using response surface methodology. Results Eng. 27, 106885. https://doi.org/10.1016/J.RINENG.2025.106885 (2025).

    Google Scholar 

  79. Kumar, B. Utilisation of aged and unaged basic oxygen furnace steel slag aggregates in pavement quality concrete. Int. J. Pavement Eng. 24 https://doi.org/10.1080/10298436.2023.2165649 (2023).

  80. Zhang, D., Zhu, T., Yang, Q., Vandeginste, V. & Li, J. Influence of ground granulated blast furnace slag on recycled concrete powder-based geopolymer cured at ambient temperature: Rheology, mechanical properties, reaction kinetics and air-void characteristics. Constr. Build. Mater. 438, 137190. https://doi.org/10.1016/J.CONBUILDMAT.2024.137190 (2024).

    Google Scholar 

  81. Ibrahim, I. K., Rady, M., Tawfik, N. M., Kassem, M. & Mahfouz, S. Y. Enhancing strength and sustainability of concrete with steel slag aggregate. Sci. Rep. 2025. 151 15, 1–20. https://doi.org/10.1038/s41598-025-01296-5 (2025).

    Google Scholar 

  82. Saha, A. K. & Sarker, P. K. Compressive strength of mortar containing ferronickel slag as replacement of natural sand. Procedia Eng. 171, 689–694 (2017).

    Google Scholar 

  83. Sakoi, Y., Aba, M., Tsukinaga, Y. & Nagataki, S. Properties of concrete used in ferronickel slag aggregate. http://www.claisse.info/Proceedings.htm (2025).

  84. Shi, D., Ma, Z., Wu, A. & Wang, J. Study on drying shrinkage properties of concrete using blast furnace slag as fine aggregate. Appl. Mech. Mater. 174–177. https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.174-177.539 (2012).

  85. Liu, Z. et al. Carbonation of blast furnace slag concrete at different CO2 concentrations: carbonation rate, phase assemblage, microstructure and thermodynamic modelling. Cem. Concr Res. 169, 107161. https://doi.org/10.1016/J.CEMCONRES.2023.107161 (2023).

    Google Scholar 

  86. Bae, S. H., Lee, J. I. & Choi, S. J. Characteristics of mortars with blast furnace slag powder and mixed fine aggregates containing Ferronickel-Slag aggregate. Mater. (Basel). 14, 5879. https://doi.org/10.3390/MA14195879 (2021).

    Google Scholar 

  87. Silva, Y. F., Villaquirán-Caicedo, M. & Izquierdo, S. Exploring the potential of alternative materials in concrete mixtures: effect of copper slag on mechanical properties and carbonation resistance. Material (Basel Switzerland) 16. https://doi.org/10.3390/MA16206677 (2023).

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. RS-2023-00217322 and No. RS-2024-00415881).

Author information

Author notes
  1. These authors contributed equally: Jun Chul Yoon and Kadepalli Nagendra Shivaprasad.

Authors and Affiliations

  1. Department of Smart City Engineering, Hanyang University ERICA, Ansan-si, 15588, Republic of Korea

    Jun Chul Yoon

  2. Centre for AI Technology in Construction, Hanyang University ERICA, Ansan-si, 15588, Republic of Korea

    Kadepalli Nagendra Shivaprasad

  3. Aggregates Resource Lab, Korea Aggregates Research Institute, Seoul, 05621, Republic of Korea

    Tae Beom Min & Jeong Min Na

  4. Engineering Center, Samsung C&T, Gangdong-gu, Seoul, 05288, Republic of Korea

    Woo Jin Lee

  5. Division of Smart Convergence Engineering, Hanyang University ERICA, Ansan-si, 15588, Republic of Korea

    Hyun Min Yang & Sanghyo Lee

Authors
  1. Jun Chul Yoon
    View author publications

    Search author on:PubMed Google Scholar

  2. Kadepalli Nagendra Shivaprasad
    View author publications

    Search author on:PubMed Google Scholar

  3. Tae Beom Min
    View author publications

    Search author on:PubMed Google Scholar

  4. Woo Jin Lee
    View author publications

    Search author on:PubMed Google Scholar

  5. Jeong Min Na
    View author publications

    Search author on:PubMed Google Scholar

  6. Hyun Min Yang
    View author publications

    Search author on:PubMed Google Scholar

  7. Sanghyo Lee
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.C.Y., K.N.S., T.B.M., W.J.L., J.M.N., H.M.Y., and S.H.L. conceived the study. J.C.Y., T.B.M., and J.M.N. performed the investigation and visualisation. J.C.Y., W.J.L., J.M.N., T.B.M., and H.M.Y. contributed to methodology and review/editing of the manuscript. K.N.S. led the original draft preparation. T.B.M., W.J.L., J.M.N., and H.M.Y. supervised the project. H.M.Y. and S.H.L. were responsible for funding acquisition. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Hyun Min Yang or Sanghyo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, J.C., Shivaprasad, K.N., Min, T.B. et al. Towards standardisation of zinc slag as a sustainable fine aggregate substitute in concrete. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36155-4

Download citation

  • Received: 06 November 2025

  • Accepted: 09 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36155-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Zinc slag
  • Sustainable fine aggregate
  • Cement concrete
  • Mechanical and durability properties
  • Construction material standards
Download PDF

Associated content

Collection

Cement and concrete materials

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing