Abstract
Dopamine signalling supports motor skill learning in a variety of ways, including through an effect on cortical and striatal plasticity. One neuromodulator that has been consistently linked to motor skill learning is dopamine. However, the specific role of dopamine D2-like receptor in the acquisition and consolidation stages of motor learning remains unclear. The aim of this study was to examine the effect of a selective D2-like receptor antagonist on human motor skill acquisition and consolidation. In this randomised, double-blind, placebo-controlled design, healthy adult men and women (N = 23) completed a sequential motor skill learning task after taking either sulpiride (800 mg) or placebo. A 20-minute bout of high-intensity interval cycling exercise was included to enhance learning effects and counteract potentially confounding sedative effects of sulpiride. Results showed that sulpiride reduced performance during motor skill acquisition relative to placebo in the first session, however this difference was abolished at the subsequent retention test. Sulpiride did not reduce consolidation of learning as expected, however it led to a reduction in speed of execution relative to placebo. Our results provide preliminary evidence of a causal relationship between neuromodulation at the dopamine D2-like receptor and motor performance during early acquisition of a novel motor skill. These results may have functional relevance in motor rehabilitation as reduced dopamine transmission can impact performance during initial acquisition and slow subsequent performance of the skill.
Data availability
Behavioural data are available upon request by contacting the corresponding author (J.P.C).
References
Krakauer, J. W., Hadjiosif, A. M., Xu, J., Wong, A. L. & Haith, A. M. Motor learning. Compr. Physiol. 9, 613–663. https://doi.org/10.1002/cphy.c170043 (2019).
Krakauer, J. W. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr. Opin. Neurol. 19, 84–90. https://doi.org/10.1097/01.wco.0000200544.29915.cc (2006).
Dayan, E. & Cohen, L. G. Neuroplasticity subserving motor skill learning. Neuron 72, 443–454. https://doi.org/10.1016/j.neuron.2011.10.008 (2011).
Coddington, L. T. & Dudman, J. T. Learning from action: reconsidering movement signaling in midbrain dopamine neuron activity. Neuron 104, 63–77. https://doi.org/10.1016/j.neuron.2019.08.036 (2019).
Robbins, T. W. & Everitt, B. J. Functions of dopamine in the dorsal and ventral striatum. Seminars Neurosci. 4, 119–127. https://doi.org/10.1016/1044-5765(92)90010-Y (1992).
Schultz, W. Neuronal reward and decision signals: from theories to data. Physiol. Rev. 95, 853–951. https://doi.org/10.1152/physrev.00023.2014 (2015).
Albin, R. L., Young, A. B. & Penney, J. B. The functional anatomy of basal ganglia disorders. Trends Neurosci. 12, 366–375. https://doi.org/10.1016/0166-2236(89)90074-x (1989).
Alexander, G. E., DeLong, M. R. & Strick, P. L. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357–381. https://doi.org/10.1146/annurev.ne.09.030186.002041 (1986).
Dreyer, J. K., Herrik, K. F., Berg, R. W. & Hounsgaard, J. D. Influence of phasic and tonic dopamine release on receptor activation. J. Neurosci. 30, 14273–14283. https://doi.org/10.1523/jneurosci.1894-10.2010 (2010).
Wiecki, T. V. & Frank, M. J. Neurocomputational models of motor and cognitive deficits in parkinson’s disease. Prog Brain Res. 183, 275–297. https://doi.org/10.1016/s0079-6123(10)83014-6 (2010).
Hosp, J. A., Pekanovic, A., Rioult-Pedotti, M. S. & Luft, A. R. Dopaminergic projections from midbrain to primary motor cortex mediate motor skill learning. J. Neurosci. 31, 2481–2487 (2011).
Molina-Luna, K. et al. Dopamine in motor cortex is necessary for skill learning and synaptic plasticity. PLoS One. 4, e7082. https://doi.org/10.1371/journal.pone.0007082 (2009).
Rioult-Pedotti, M. S., Pekanovic, A., Atiemo, C. O., Marshall, J. & Luft, A. R. Dopamine promotes motor cortex plasticity and motor skill learning via PLC activation. PLoS One. 10, e0124986. https://doi.org/10.1371/journal.pone.0124986 (2015).
Nakamura, T. et al. Distinct motor impairments of dopamine D1 and D2 receptor knockout mice revealed by three types of motor behavior. Front. Integr. Neurosci. 8, 56. https://doi.org/10.3389/fnint.2014.00056 (2014).
Sommer, W. H., Costa, R. M. & Hansson, A. C. Dopamine systems adaptation during acquisition and consolidation of a skill. Front. Integr. Neurosci. 8, 87 (2014).
Yin, H. H. et al. Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill. Nat. Neurosci. 12, 333–341. https://doi.org/10.1038/nn.2261 (2009).
Debas, K. et al. Off-line consolidation of motor sequence learning results in greater integration within a cortico-striatal functional network. Neuroimage 99, 50–58. https://doi.org/10.1016/j.neuroimage.2014.05.022 (2014).
Doyon, J., Gabitov, E., Vahdat, S., Lungu, O. & Boutin, A. Current issues related to motor sequence learning in humans. Curr. Opin. Behav. Sci. 20, 89–97. https://doi.org/10.1016/j.cobeha.2017.11.012 (2018).
Kishore, A., Joseph, T., Velayudhan, B., Popa, T. & Meunier, S. Early, severe and bilateral loss of LTP and LTD-like plasticity in motor cortex (M1) in de Novo parkinson’s disease. Clin. Neurophysiol. 123, 822–828. https://doi.org/10.1016/j.clinph.2011.06.034 (2012).
Suppa, A. et al. Lack of LTP-like plasticity in primary motor cortex in parkinson’s disease. Exp. Neurol. 227, 296–301. https://doi.org/10.1016/j.expneurol.2010.11.020 (2011).
Ueki, Y. et al. Altered plasticity of the human motor cortex in parkinson’s disease. Ann. Neurol. 59, 60–71. https://doi.org/10.1002/ana.20692 (2006).
Marinelli, L., Quartarone, A., Hallett, M., Frazzitta, G. & Ghilardi, M. F. The many facets of motor learning and their relevance for parkinson’s disease. Clin. Neurophysiol. 128, 1127–1141. https://doi.org/10.1016/j.clinph.2017.03.042 (2017).
Ueda, N. et al. Relationship between motor learning and gambling propensity in parkinson’s disease. J. Clin. Exp. Neuropsychol. 44, 50–61. https://doi.org/10.1080/13803395.2022.2083083 (2022).
Dan, X., King, B. R., Doyon, J. & Chan, P. Motor sequence learning and consolidation in unilateral de Novo patients with parkinson’s disease. PLoS One. 10, e0134291. https://doi.org/10.1371/journal.pone.0134291 (2015).
Lahlou, S., Gabitov, E., Owen, L., Shohamy, D. & Sharp, M. Preserved motor memory in parkinson’s disease. Neuropsychologia 167, 108161. https://doi.org/10.1016/j.neuropsychologia.2022.108161 (2022).
Noohi, F. et al. Interactive effects of age and multi-gene profile on motor learning and sensorimotor adaptation. Neuropsychologia 84, 222–234. https://doi.org/10.1016/j.neuropsychologia.2016.02.021 (2016).
Schuck, N. W. et al. Effects of aging and dopamine genotypes on the emergence of explicit memory during sequence learning. Neuropsychologia 51, 2757–2769. https://doi.org/10.1016/j.neuropsychologia.2013.09.009 (2013).
Noohi, F. et al. Association of COMT val158met and DRD2 G > T genetic polymorphisms with individual differences in motor learning and performance in female young adults. J. Neurophysiol. 111, 628–640. https://doi.org/10.1152/jn.00457.2013 (2014).
Baetu, I., Burns, N. R., Urry, K., Barbante, G. G. & Pitcher, J. B. Commonly-occurring polymorphisms in the COMT, DRD1 and DRD2 genes influence different aspects of motor sequence learning in humans. Neurobiol. Learn. Mem. 125, 176–188. https://doi.org/10.1016/j.nlm.2015.09.009 (2015).
Monte-Silva, K. et al. D2 receptor block abolishes θ burst stimulation-induced neuroplasticity in the human motor cortex. Neuropsychopharmacology: Official Publication Am. Coll. Neuropsychopharmacol. 36, 2097–2102. https://doi.org/10.1038/npp.2011.100 (2011).
Meintzschel, F. & Ziemann, U. Modification of practice-dependent plasticity in human motor cortex by neuromodulators. Cereb. Cortex. 16, 1106–1115. https://doi.org/10.1093/cercor/bhj052 (2006).
Floel, A. et al. Dopaminergic influences on formation of a motor memory. Ann. Neurol. 58, 121–130. https://doi.org/10.1002/ana.20536 (2005).
Vaillancourt, D. E., Schonfeld, D., Kwak, Y., Bohnen, N. I. & Seidler, R. Dopamine overdose hypothesis: evidence and clinical implications. Mov. Disord. 28, 1920–1929. https://doi.org/10.1002/mds.25687 (2013).
Hattori, S., Naoi, M. & Nishino, H. Striatal dopamine turnover during treadmill running in the rat: relation to the speed of running. Brain Res. Bull. 35, 41–49. https://doi.org/10.1016/0361-9230(94)90214-3 (1994).
Sacheli, M. A. et al. Exercise increases caudate dopamine release and ventral striatal activation in parkinson’s disease. Mov. Disord. 34, 1891–1900. https://doi.org/10.1002/mds.27865 (2019).
Wanner, P., Cheng, F. H. & Steib, S. Effects of acute cardiovascular exercise on motor memory encoding and consolidation: a systematic review with meta-analysis. Neurosci. Biobehav Rev. 116, 365–381. https://doi.org/10.1016/j.neubiorev.2020.06.018 (2020).
Christiansen, L. et al. The beneficial effect of acute exercise on motor memory consolidation is modulated by dopaminergic gene profile. J. Clin. Med. 8, 578 (2019).
Mang, C. S. et al. Exploring genetic influences underlying acute aerobic exercise effects on motor learning. Sci. Rep. 7, 12123–12123. https://doi.org/10.1038/s41598-017-12422-3 (2017).
Curtin, D., Taylor, E. M., Bellgrove, M. A., Chong, T. T. & Coxon, J. P. D2 receptor Blockade eliminates exercise-induced changes in cortical Inhibition and excitation. Brain Stimul. 16, 727–733. https://doi.org/10.1016/j.brs.2023.04.019 (2023).
Curtin, D., Taylor, E. M., Bellgrove, M. A., Chong, T. T. & Coxon, J. P. Dopamine D2 receptor modulates exercise related effect on cortical Excitation/Inhibition and motor skill acquisition. J. Neurosci. 44 https://doi.org/10.1523/JNEUROSCI.2028-23.2024 (2024).
Miyamoto, S., Duncan, G. E., Marx, C. E. & Lieberman, J. A. Treatments for schizophrenia: a critical review of Pharmacology and mechanisms of action of antipsychotic drugs. Mol. Psychiatry. 10, 79–104. https://doi.org/10.1038/sj.mp.4001556 (2005).
Reis, J. et al. Noninvasive cortical stimulation enhances motor skill acquisition over multiple days through an effect on consolidation. Proc. Natl. Acad. Sci. U S A. 106, 1590–1595. https://doi.org/10.1073/pnas.0805413106 (2009).
Luft, A. R. & Buitrago, M. M. Stages of motor skill learning. Mol. Neurobiol. 32, 205–216. https://doi.org/10.1385/mn:32:3 (2005).
Stavrinos, E. L. & Coxon, J. P. High-intensity interval exercise promotes motor cortex disinhibition and early motor skill consolidation. J. Cogn. Neurosci. 29, 593–604. https://doi.org/10.1162/jocn_a_01078 (2017).
Dietrich, A. & Audiffren, M. The reticular-activating hypofrontality (RAH) model of acute exercise. Neurosci. Biobehav Rev. 35, 1305–1325. https://doi.org/10.1016/j.neubiorev.2011.02.001 (2011).
Loy, B. D., Dishman, R. K. & J., O. C. P. & and The effect of a single bout of exercise on energy and fatigue states: a systematic review and meta-analysis. Fatigue: Biomed. Health Behav. 1, 223–242. https://doi.org/10.1080/21641846.2013.843266 (2013).
Ho, C. S., Chen, H. J., Chiu, N. C., Shen, E. Y. & Lue, H. C. Short-term sulpiride treatment of children and adolescents with tourette syndrome or chronic tic disorder. J. Formos. Med. Assoc. 108, 788–793. https://doi.org/10.1016/s0929-6646(09)60406-x (2009).
Sheehan, D. V. et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59(Suppl 20), 22–33 (1998).
Sports Medicine Australia, G. A. & Canberra, A. C. T. Sports Medicine Australia Pre-exercise Screening System. (2011).
Algeri, S., Ponzio, F., Dolfini, E. & Jori, A. Biochemical effects of treatment with oral contraceptive steroids on the dopaminergic system of the rat. Neuroendocrinology 22, 343–351. https://doi.org/10.1159/000122643 (1976).
Taylor, C. M. et al. Striatal dopamine synthesis and cognitive flexibility differ between hormonal contraceptive users and nonusers. Cereb. Cortex. 33, 8485–8495. https://doi.org/10.1093/cercor/bhad134 (2023).
Shansky, R. M. & Murphy, A. Z. Considering sex as a biological variable will require a global shift in science culture. Nat. Neurosci. 24, 457–464. https://doi.org/10.1038/s41593-021-00806-8 (2021).
Oldfield, R. C. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. https://doi.org/10.1016/0028-3932(71)90067-4 (1971).
Caley, C. F. & Weber, S. S. Sulpiride: an antipsychotic with selective dopaminergic antagonist properties. Ann. Pharmacother. 29, 152–160. https://doi.org/10.1177/106002809502900210 (1995).
Takano, A. et al. The antipsychotic sultopride is overdosed–a PET study of drug-induced receptor occupancy in comparison with sulpiride. Int. J. Neuropsychopharmacol. 9, 539–545. https://doi.org/10.1017/s1461145705006103 (2006).
Naef, M. et al. Effects of dopamine D2/D3 receptor antagonism on human planning and Spatial working memory. Transl Psychiatry. 7, e1107. https://doi.org/10.1038/tp.2017.56 (2017).
Bond, A. & Lader, M. The use of analogue scales in rating subjective feelings. Br. J. Med. Psychol. 47, 211–218. https://doi.org/10.1111/j.2044-8341.1974.tb02285.x (1974).
Andrews, S. C. et al. Intensity matters: High-intensity interval exercise enhances motor cortex plasticity more than moderate exercise. Cereb. Cortex. 30, 101–112. https://doi.org/10.1093/cercor/bhz075 (2020).
Curtin, D. et al. Ageing attenuates exercise-enhanced motor cortical plasticity. J. Physiol. 601, 5733–5750. https://doi.org/10.1113/JP285243 (2023).
Taylor, E. M. et al. High-intensity acute exercise impacts motor learning in healthy older adults. NPJ Sci. Learn. 9 https://doi.org/10.1038/s41539-024-00220-2 (2024).
Cantarero, G., Tang, B., O’Malley, R., Salas, R. & Celnik, P. Motor learning interference is proportional to occlusion of LTP-like plasticity. J. Neurosci. 33, 4634–4641. https://doi.org/10.1523/JNEUROSCI.4706-12.2013 (2013).
Reis, J. et al. Time- but not sleep-dependent consolidation of tDCS-enhanced visuomotor skills. Cereb. Cortex. 25, 109–117. https://doi.org/10.1093/cercor/bht208 (2015).
McClelland, G. R., Cooper, S. M. & Pilgrim, A. J. A comparison of the central nervous system effects of haloperidol, chlorpromazine and sulpiride in normal volunteers. Br. J. Clin. Pharmacol. 30, 795–803. https://doi.org/10.1111/j.1365-2125.1990.tb05444.x (1990).
Mehta, M. A. et al. Systemic sulpiride modulates striatal blood flow: relationships to Spatial working memory and planning. Neuroimage 20, 1982–1994. https://doi.org/10.1016/j.neuroimage.2003.08.007 (2003).
Freeze, B. S., Kravitz, A. V., Hammack, N., Berke, J. D. & Kreitzer, A. C. Control of basal ganglia output by direct and indirect pathway projection neurons. J. Neurosci. 33, 18531–18539. https://doi.org/10.1523/jneurosci.1278-13.2013 (2013).
Mink, J. W. The basal ganglia and involuntary movements: impaired Inhibition of competing motor patterns. Arch. Neurol. 60, 1365–1368. https://doi.org/10.1001/archneur.60.10.1365 (2003).
Cui, G. et al. Concurrent activation of striatal direct and indirect pathways during action initiation. Nature 494, 238–242. https://doi.org/10.1038/nature11846 (2013).
Nonomura, S. et al. Monitoring and updating of action selection for Goal-Directed behavior through the striatal direct and indirect pathways. Neuron 99, 1302–1314e1305. https://doi.org/10.1016/j.neuron.2018.08.002 (2018).
Augustin, S. M., Loewinger, G. C., O’Neal, T. J., Kravitz, A. V. & Lovinger, D. M. Dopamine D2 receptor signaling on iMSNs is required for initiation and Vigor of learned actions. Neuropsychopharmacology 45, 2087–2097. https://doi.org/10.1038/s41386-020-00799-1 (2020).
Jin, X., Tecuapetla, F. & Costa, R. M. Basal ganglia subcircuits distinctively encode the parsing and concatenation of action sequences. Nat. Neurosci. 17, 423–430 (2014).
Alexander, G. E. & Crutcher, M. D. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci. 13, 266–271. https://doi.org/10.1016/0166-2236(90)90107-l (1990).
Calabresi, P., Picconi, B., Tozzi, A., Ghiglieri, V. & Di Filippo, M. Direct and indirect pathways of basal ganglia: a critical reappraisal. Nat. Neurosci. 17, 1022–1030. https://doi.org/10.1038/nn.3743 (2014).
Mink, J. W. The basal ganglia: focused selection and Inhibition of competing motor programs. Prog Neurobiol. 50, 381–425. https://doi.org/10.1016/s0301-0082(96)00042-1 (1996).
Redgrave, P. et al. Goal-directed and habitual control in the basal ganglia: implications for parkinson’s disease. Nat. Rev. Neurosci. 11, 760–772. https://doi.org/10.1038/nrn2915 (2010).
Prodoehl, J., Corcos, D. M. & Vaillancourt, D. E. Basal ganglia mechanisms underlying precision grip force control. Neurosci. Biobehav Rev. 33, 900–908. https://doi.org/10.1016/j.neubiorev.2009.03.004 (2009).
Wasson, P., Prodoehl, J., Coombes, S. A., Corcos, D. M. & Vaillancourt, D. E. Predicting grip force amplitude involves circuits in the anterior basal ganglia. Neuroimage 49, 3230–3238. https://doi.org/10.1016/j.neuroimage.2009.11.047 (2010).
Grafton, S. T. & Tunik, E. Human basal ganglia and the dynamic control of force during on-line corrections. J. Neurosci. 31, 1600–1605. https://doi.org/10.1523/jneurosci.3301-10.2011 (2011).
Fellows, S. J., Noth, J. & Schwarz, M. Precision grip and parkinson’s disease. Brain 121 (Pt 9), 1771–1784. https://doi.org/10.1093/brain/121.9.1771 (1998).
Roberts, H. C. et al. The association of grip strength with severity and duration of parkinson’s: A Cross-Sectional study. Neurorehabil Neural Repair. 29, 889–896. https://doi.org/10.1177/1545968315570324 (2015).
Brück, A. et al. Striatal subregional 6-[18F]fluoro-L-dopa uptake in early parkinson’s disease: a two-year follow-up study. Mov. Disord. 21, 958–963. https://doi.org/10.1002/mds.20855 (2006).
Ouchi, Y. et al. Microglial activation and dopamine terminal loss in early parkinson’s disease. Ann. Neurol. 57, 168–175. https://doi.org/10.1002/ana.20338 (2005).
Spraker, M. B., Prodoehl, J., Corcos, D. M., Comella, C. L. & Vaillancourt, D. E. Basal ganglia hypoactivity during grip force in drug naïve parkinson’s disease. Hum. Brain Mapp. 31, 1928–1941. https://doi.org/10.1002/hbm.20987 (2010).
Albert, S. T. et al. Competition between parallel sensorimotor learning systems. eLife 11, e65361. https://doi.org/10.7554/eLife.65361 (2022).
Mehta, M. A., Sahakian, B. J., McKenna, P. J. & Robbins, T. W. Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in parkinson’s disease. Psychopharmacol. (Berl). 146, 162–174. https://doi.org/10.1007/s002130051102 (1999).
Macedo-Lima, M., Boyd, H. M. & Remage-Healey, L. Dopamine D1 receptor activation drives plasticity in the Songbird auditory pallium. J. Neurosci. 41, 6050–6069. https://doi.org/10.1523/jneurosci.2823-20.2021 (2021).
Walker, M. P., Brakefield, T., Morgan, A., Hobson, J. A. & Stickgold, R. Practice with sleep makes perfect: sleep-Dependent motor skill learning. Neuron 35, 205–211. https://doi.org/10.1016/S0896-6273(02)00746-8 (2002).
Festini, S. B., Preston, S. D., Reuter-Lorenz, P. A. & Seidler, R. D. Emotion and reward are dissociable from error during motor learning. Exp. Brain Res. 234, 1385–1394. https://doi.org/10.1007/s00221-015-4542-z (2016).
Galea, J. M., Mallia, E., Rothwell, J. & Diedrichsen, J. The dissociable effects of punishment and reward on motor learning. Nat. Neurosci. 18, 597–602. https://doi.org/10.1038/nn.3956 (2015).
Schultz, W., Dayan, P. & Montague, P. R. A neural substrate of prediction and reward. Science 275, 1593–1599. https://doi.org/10.1126/science.275.5306.1593 (1997).
Codol, O., Holland, P. J., Manohar, S. G. & Galea, J. M. Reward-Based improvements in motor control are driven by multiple Error-Reducing mechanisms. J. Neurosci. 40, 3604–3620. https://doi.org/10.1523/JNEUROSCI.2646-19.2020 (2020).
Badami, R., Mohammad, V., Gabriele, W., Namazizadeh, M. & and Feedback about more accurate versus less accurate trials. Res. Q. Exerc. Sport. 83, 196–203. https://doi.org/10.1080/02701367.2012.10599850 (2012).
Blain, B. & Sharot, T. Intrinsic reward: potential cognitive and neural mechanisms. Curr. Opin. Behav. Sci. 39, 113–118. https://doi.org/10.1016/j.cobeha.2021.03.008 (2021).
Fitts, P. M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 47, 381–391. https://doi.org/10.1037/h0055392 (1954).
Thumser, Z. C., Slifkin, A. B., Beckler, D. T. & Marasco, P. D. Fitts’ law in the control of isometric grip force with naturalistic targets. Front. Psychol. 9, 560. https://doi.org/10.3389/fpsyg.2018.00560 (2018).
Hong, S. & Hikosaka, O. Dopamine-mediated learning and switching in cortico-striatal circuit explain behavioral changes in reinforcement learning. Front. Behav. Neurosci. 5, 15. https://doi.org/10.3389/fnbeh.2011.00015 (2011).
Palminteri, S. et al. Dopamine-dependent reinforcement of motor skill learning: evidence from Gilles de La tourette syndrome. Brain 134, 2287–2301. https://doi.org/10.1093/brain/awr147 (2011).
Wiesel, F. A., Alfredsson, G., Ehrnebo, M. & Sedvall, G. The pharmacokinetics of intravenous and oral sulpiride in healthy human subjects. Eur. J. Clin. Pharmacol. 17, 385–391. https://doi.org/10.1007/bf00558453 (1980).
Snow, N. J. et al. The effect of an acute bout of Moderate-Intensity aerobic exercise on motor learning of a continuous tracking task. PLoS One. 11, e0150039. https://doi.org/10.1371/journal.pone.0150039 (2016).
Statton, M. A., Encarnacion, M., Celnik, P. & Bastian, A. J. A single bout of moderate aerobic exercise improves motor skill acquisition. PLoS One. 10, e0141393. https://doi.org/10.1371/journal.pone.0141393 (2015).
Burstein, E. S. et al. Intrinsic efficacy of antipsychotics at human D2, D3, and D4 dopamine receptors: identification of the clozapine metabolite N-desmethylclozapine as a D2/D3 partial agonist. J. Pharmacol. Exp. Ther. 315, 1278–1287. https://doi.org/10.1124/jpet.105.092155 (2005).
Roth, B. & Driscol, J. P. D. S. P. Ki Database. Psychoactive drug screening program (PDSP). University North. Carolina Chapel Hill United States Natl. Inst. Mental Health (2011).
Gurevich, E. V. & Location, Location, L. The expression of D3 dopamine receptors in the nervous system. Curr. Top. Behav. Neurosci. 60, 29–45. https://doi.org/10.1007/7854_2022_314 (2023).
Eisenegger, C. et al. Role of dopamine D2 receptors in human reinforcement learning. Neuropsychopharmacology 39, 2366–2375. https://doi.org/10.1038/npp.2014.84 (2014).
Mikus, N. et al. Blocking D2/D3 dopamine receptors in male participants increases volatility of beliefs when learning to trust others. Nat. Commun. 14, 4049. https://doi.org/10.1038/s41467-023-39823-5 (2023).
Acknowledgements
We thank Dr Ziarih Hawi, Daniel Pearce, and Julia Koutoulogenis for their assistance with drug holding and blinding; Claire Cadwallader and Sarah Cohen for their support with data collection; and Bridgitt Shea, Amy Huynh, Huw Jarvis, and Dami Obawede for their assistance with participant recruitment.
Funding
This research was supported by the Australian Research Council Grant, DP200100234, awarded to J.C., and funding awarded to M.B., T.T-J.C, and J.C by the Office of Naval Research (Global). M.B., is supported by the National Health and Medical Research Council. T.T-J.C is supported by the Australian Research Council (DP180102383, FT220100294).
Author information
Authors and Affiliations
Contributions
Eleanor M. Taylor: Conceptualization, Methodology, Formal analysis, Investigation, Writing – Original Draft, Visualisation. Dylan Curtin: Conceptualization, Methodology, Formal analysis, Investigation, Writing - Review & Editing. Mark A. Bellgrove: Conceptualization, Methodology, Writing - Review & Editing, Funding acquisition. Trevor T-J. Chong: Conceptualization, Methodology, Writing - Review & Editing, Funding acquisition. James P. Coxon: Conceptualization, Methodology, Formal analysis, Investigation, Writing - Review & Editing, Visualisation, Funding acquisition.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Taylor, E.M., Curtin, D., Chong, T.TJ. et al. The effect of dopamine D2-like receptor blockade on human motor performance and skill acquisition. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36241-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-36241-7