Abstract
Accurate evaluation of soil mechanical behavior remains a cornerstone of reliable geotechnical engineering and optimized foundation design. Among the key parameters that define soil deformability, the pressuremeter modulus (Ep) plays a crucial role in assessing the ground response and structural stability. However, conventional approaches for determining Ep through empirical correlations or in situ measurements are often labor intensive, costly, and subject to significant uncertainty. These limitations underscore the necessity for advanced predictive frameworks that can provide both accuracy and efficiency in geotechnical characterization. In the present work, response surface methodology (RSM) is applied as an advanced statistical modeling and optimization technique to improve the predictive capability of the pressuremeter modulus. The experimental investigation is structured via a central composite design (L35) framework, enabling the systematic evaluation of nonlinear interactions among the principal geotechnical variables, namely, depth (D), cohesion (C), internal friction angle (φ), and unit weight (γ). The developed model was rigorously validated through analysis of variance, which revealed a high level of statistical significance with an excellent coefficient of determination (R2 = 96.50%). The desirability function approach is subsequently applied to determine the optimal combination of soil parameters that maximize Ep, providing valuable guidance for design and site investigation strategies. The findings highlight the transformative potential of data-driven statistical modeling in refining soil property estimation and advancing geotechnical design practices. By demonstrating the robustness and predictive capacity of the RSM, this research establishes a methodological foundation for intelligent, efficient, and cost-effective geotechnical engineering applications.
Data availability
The data used to support the findings of this study are included within the article.
References
Timoshenko, S. P. & Goodier, J. N. Theory of Elasticity (McGraw-Hill Book Co., 1970). https://doi.org/10.1115/1.3408648
Menard, L. The pressuremeter and foundation engineering. Sols Soils 1, 1–20 (1963).
Ménard, L. The pressuremeter test: Principles and applications. Geotech. Test. J. 29, 1–15 (2006).
Gao, K., Cheng, Z., Song, Y., Yin, S. & Chen, Y. Machine learning–driven surrogate model development for geotechnical numerical simulation. Geotech. Res. 12, 71–84. https://doi.org/10.1680/jgere.23.00090 (2025).
Li, H., Wang, Y. & Xu, L. Influence of soil properties on pressuremeter modulus prediction. Geotech. Geol. Eng. 40, 567–580 (2022).
Assia, A., Bencheikh, M., Boukour, S. & Bahloul, O. Widiane Qatr Ennada, Z. Enhancement of the mechanical characteristics of a green mortar under extreme conditions: Experimental study and optimization analysis. Iran. J. Sci. Technol. Trans. Civ. Eng. 49, 2575–2599. https://doi.org/10.1007/s40996-024-01612-5(2024) (2024).
Boukhatem, G. et al. Impact of addition of polyvinyl chloride on the properties of clayey soil using experimental approach and optimization for geotechnical engineering applications. Sci. Rep. 15, 19901. https://doi.org/10.1038/s41598-025-95080-0 (2025).
Xu, L., Zhang, Y. & Li, X. Application of response surface methodology in geotechnical engineering: A review. Geotech. Res. 8, 89–102 (2021).
Boukhatem, G. et al. Optimizing properties of clayey soil using lime and waste marble powder: A sustainable approach for engineering applications. Front. Mater. 11, 1392875. https://doi.org/10.3389/fmats.2024.1392875 (2024).
Bencheikh, M. et al. Recent tendencies in the use of the response surface method in the stability of a synthetic retaining wall. Geotech. Eng. J. SEAGS AGSSEA. 54, 38–49 (2023).
Jaffar, S. T. A. et al. Data-driven intelligent modeling of unconfined compressive strength of heavy metal-contaminated soil. J. Rock. Mech. Geotech. Eng. 17, 1801–1815 (2025). https://doi.org/10.1016/j.jrmge.2024.05.025
Handel, N., Aidoud, A., Bencheikh, M., Hafsi, H. & Bellucci, S. Microstructural characterization and multi objective optimization of concrete containing recycled gravel and crystallized slag: A box Behnken design methodology. Iran. J. Sci. Technol. Trans. Civ. Eng. 49, 4521–4545. https://doi.org/10.1007/s40996-024-01718-w (2025).
Raja, M. N. A., Jaffar, S. T. A., Bardhan, A. & Shukla, S. K. Predicting and validating the load-settlement behavior of large-scale geosynthetic-reinforced soil abutments using hybrid intelligent modeling. J. Rock Mech. Geotech. Eng. 15, 773–788. https://doi.org/10.1016/j.jrmge.2022.04.012 (2023).
Zangeneh, N., Azizian, A., Lye, L. & Popescu, R. Application of response surface methodology in numerical geotechnical analysis. In 55th Canadian Society for Geotechnical Conference, Hamilton, Ontario (2002).
Zhang, J., Li, H. & Wang, Z. Artificial intelligence in geotechnical engineering: A comprehensive review. J. Rock Mech. Geotech. Eng. 13, 1234–1250 (2021).
Xu, W., Zhang, J. & Guan, Y. Machine learning for predicting soil behavior in pressuremeter tests. Comput. Geotech. 145, 104678 (2023).
Khan, M. A., Yallese, M. R. & Liu, H. Multi-objective optimization in geotechnical design: A review of desirability functions and response surface methodology. J. Geotech. Geoenviron. Eng. 149, 04023012 (2023).
Yallese, M. R., Khan, M. A. & Liu, H. Application of desirability functions for multi-objective optimization in geotechnical design. Comput. Geotech. 140, 104532 (2022).
Myers, R. H., Montgomery, D. C. & Anderson-Cook, C. M. Response Surface Methodology in Process and Product Optimization Using Designed Experiments 4th edn (Wiley, 2016).
Montgomery, D. C. Design and Analysis of Experiments 9th edn (Wiley, 2017).
Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning (Springer, 2009).
Molnar, C. Interpretable Machine Learning (Lulu, 2019).
Zhang, Q., Xu, L. & Wang, Y. Optimizing foundation design using machine learning and advanced statistical methods. Geotech. Geol. Eng. 42, 45–60 (2024).
Wang, Z., Zhang, Q. & Xu, W. Response surface methodology for optimizing geotechnical parameters in foundation design. Int. J. Geomech. 22, 04022035 (2022).
Wang, Z., Zhang, Q. & Xu, L. Advanced modeling and optimization techniques in geotechnical engineering using design expert 13. Int. J. Geomech. 22, 04022045 (2022).
Zhang, W. et al. Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challenge. Gondwana Res. 109, 1–19. https://doi.org/10.1016/j.gr.2022.04.001 (2022).
Baghbani, A., Choudhury, T. A., Costa, S. & Reiner, J. Application of artificial intelligence in geotechnical engineering: A state-of-the-art review. Earth-Sci. Rev. 231, 104064. https://doi.org/10.1016/j.earscirev.2022.104064 (2022).
Zhang, W., Li, H., Gu, X., Han, L. & Wang, L. Comprehensive review of machine learning in geotechnical reliability analysis: Algorithms, applications and further challenges. Appl. Soft Comput. 136, 110181. https://doi.org/10.1016/j.asoc.2022.110181 (2023).
Shao, W. et al. The application of machine learning techniques in geotechnical engineering: A review and comparison. Mathematics 11(18), 3932. https://doi.org/10.3390/math11183932 (2023).
Ramasamy, D., Veerasamy, D. & Sivamani, S. The future of geotechnical engineering through deep learning: A concise literature review. J. Inf. Syst. Eng. Manag. 10(1), 1–12. https://doi.org/10.55267/iadt.2025.100101 (2025).
Zhang, P., Yin, Z. & Jin, Y. F. Machine learning-based modelling of soil properties for geotechnical design: Review, tool development and comparison. Arch. Comput. Methods Eng. 28, 3271–3292. https://doi.org/10.1007/s11831-021-09613-2 (2021).
Lakehal, R. & Djemili, L. Studying the effect of a variation in the main parameters on stability of homogeneous Earth dams using design experiment. J. Water Land. Dev. 34, 173–179. https://doi.org/10.1515/jwld-2017-0051 (2017).
Golnezhad, M. Analyse physico-mécanique des formations argileuses gonflantes Dans La région Sud du Lac d’Urmia, Iran. Civ. Geoeng. Lett. 1(1), e100007. https://doi.org/10.22034/CGEL.1.1.e100007 (2024).
Aslani, H., Ebrahimi, M., Arslan, S., Yılmaz, A. & Khodadad, M. Investigating the influence of moisture content on the plasticity of clayey soils. Civ. Geoeng. Lett. 2(1), e100034. https://doi.org/10.22034/CGEL.2.1.e100034 (2025).
Fatemi, M., Alizade, S. & Gorbani, M. Physical properties of clayey soil in the development of agricultural strategies. Civ. Geoeng. Lett. 2(2), e100041. https://doi.org/10.22034/CGEL.2.2.e100041 (2025).
Phoon, K. & Zhang, W. Future of machine learning in geotechnics. Georisk Assess. Manag. Risk Eng. Syst. Geohazards. 16(2), 123–137. https://doi.org/10.1080/17499518.2022.2082345 (2022).
Liu, H., Su, H., Sun, L. & Dias-da-Costa, D. State-of-the-art review on the use of AI-enhanced computational mechanics in geotechnical engineering. Artif. Intell. Rev. https://doi.org/10.1007/s10462-024-10613-2 (2024).
Yaghoubi, E., Yaghoubi, E., Khamees, A. & Vakili, A. A systematic review and meta-analysis of artificial neural network, machine learning, deep learning, and ensemble learning approaches in field of geotechnical engineering. Neural Comput. Appl. https://doi.org/10.1007/s00521-024-09012-3 (2024).
Mitelman, A., Yang, B., Urlainis, A. & Elmo, D. Coupling geotechnical numerical analysis with machine learning for observational method projects. Geosciences 13(7), 184. https://doi.org/10.3390/geosciences13070184 (2023).
Wang, Y. & Tian, H. Digital geotechnics: From data-driven site characterisation towards digital transformation and intelligence in geotechnical engineering. Georisk Assess. Manag. Risk Eng. Syst. Geohazards. 17(4), 1–15. https://doi.org/10.1080/17499518.2023.2271234 (2023).
Corrêa-Silva, M. et al. Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags. J. Clean. Prod. 272, 122703. https://doi.org/10.1016/j.jclepro.2020.122703 (2020).
Maira Carabajal, C. M., Teglia, S. & Cerutti, M. J. Culzoni and Héctor C. Goicoechea. Applications of liquid-phase microextraction procedures to complex samples assisted by response surface methodology for optimization. Microchem. J. https://doi.org/10.1016/j.microc.2019.104436 (2019).
Cristelo, N., Glendinning, S., Fernandes, L. & Pinto, A. Effects of alkaline-activated fly ash and portland cement on soft soil stabilisation. Acta Geotech. 8, 395–409. https://doi.org/10.1007/s11440-012-0191-5 (2013).
Cristelo, N., Glendinning, S. & Pinto, A. T. Deep soft soil improvement by alkaline activation. Proc. Inst. Civ. Eng. Ground Improv. 164(2), 73–82. https://doi.org/10.1680/grim.2011.164.2.73 (2011).
Rios, S. et al. Increasing the reaction kinetics of alkali-activated fly ash binders for stabilisation of a silty sand pavement sub-base. Road. Mater. Pavement Des. 19(1), 1–17. https://doi.org/10.1080/14680629.2016.1262442 (2018).
Cristelo, N., Glendinning, S. & Teixeira Pinto, A. Deep soft soil improvement using alkaline activated fly ash. Géotechnique 63(9), 793–800. https://doi.org/10.1680/geot.12.P.033 (2013).
Nikbakht, M. et al. An experimental study for swelling effect on repairing of cracks in fine-grained clayey soils. Appl. Sci. 12(17), 1–14. https://doi.org/10.3390/app12178596 (2022).
Messaouda, B., Assia, A., Salima, B., Nacera, K. & Lazhar, B. Numerical modeling of the behavior of a surface foundation located in the proximity of a slope. Soil Rocks São Paulo 47(1), 1–11. https://doi.org/10.28927/SR.2024.008722 (2024).
Cristelo, N., Glendinning, S., Miranda, T., Oliveira, D. V. & Silva, R. Ground improvement using alkali-activated fly ash with blast furnace slag. Constr. Build. Mater. 32, 304–311. https://doi.org/10.1016/j.conbuildmat.2011.11.103 (2012).
Rios, S., Cristelo, N., Fonseca, T. & Ferreira, C. Stiffness behavior of soils stabilized with alkali-activated cement. J. Mater. Civ. Eng. 28(2), 04016156. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001392 (2016).
Ghafurian, S. & Toufigh, V. The performance of geopolymers in soil stabilization: A review. Constr. Build. Mater. 259, 120313. https://doi.org/10.1016/j.conbuildmat.2020.120313 (2020).
Wang, K., Niu, D., Tang, C. & Shi, B. Mechanical behavior of fiber-reinforced soils: A review. Geotext. Geomembr. 50, 131–150. https://doi.org/10.1016/j.geotexmem.2022.01.003 (2022).
Raja, M. N. A., Mercado, V., Abdoun, T. & El-Sekelly, W. Seismic site amplification prediction- an integrated bayesian optimisation explainable machine learning approach. Georisk Assess. Manag. Risk Eng. Syst. Geohazards. 19(3), 573–592. https://doi.org/10.1080/17499518.2025.2521870 (2025).
Boudermine, H., Boumaaza, M., Belaadi, A., Bourchak, M. & Bencheikh, M. Performance analysis of Biochar and W. Robusta palm waste reinforced green mortar using response surface methodology and machine learning methods. Constr. Build. Mater. 438, 137214. https://doi.org/10.1016/j.conbuildmat.2024.137214 (2024).
Tang, C., Shi, B., Zhao, L. & Wang, B. Effect of polypropylene fiber on strength and thermal properties of soil. Cold Reg. Sci. Technol. 143, 9–15. https://doi.org/10.1016/j.coldregions.2017.08.001 (2017).
Tang, C., Wang, D., Cui, Y. J., Shi, B. & Li, J. Tensile strength of fiber-reinforced soil. J. Mater. Civ. Eng. 28(7), 04016046. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001526 (2016).
Li, J., Tang, C., Wang, D., Pei, X. & Shi, B. Effect of discrete fibre reinforcement on soil tensile strength. J. Rock Mech. Geotech. Eng. 6(2), 133–139. https://doi.org/10.1016/j.jrmge.2014.01.006 (2014).
Liu, J., Li, X., Li, G. & Zhang, J. Investigation of the mechanical behavior of polypropylene fiber-reinforced red clay. Appl. Sci. 11(22), 10521. https://doi.org/10.3390/app112210521 (2021).
Fatahi, B., Khabbaz, H. & Le, T. M. Swelling characteristics of clayey soil stabilized with lime and natural fibers. Int. J. Geomech. 12(1), 1–9. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000142 (2012).
Singh, B., Shukla, S. K. & Sharma, R. Soil stabilization using natural fibers: An overview. Environ. Geotech. 8(1), 1–14. https://doi.org/10.1680/jenge.19.00041 (2021).
Yadav, R. K., Tiwari, D. & Jha, S. K. A review of natural fiber reinforced soil. Mater. Today Proc. 50, 1450–1456. https://doi.org/10.1016/j.matpr.2021.07.420 (2022).
Duan, Z., Xu, W. & Tang, C. Deep learning in geotechnical engineering: A comprehensive review. Autom. Constr. 126, 103688 (2021).
Ghanbari, A., Eslami, A. & Abdi, M. Predicting pressuremeter modulus using machine learning methods. Soils Found. 63, 103599 (2023).
Zhang, Y., Li, X. & Xu, L. An integrated model combining artificial intelligence and response surface methodology for geotechnical analysis. Geotech. Geol. Eng. 41, 1123–1142 (2023).
Wang, B., Chen, L. & Liu, H. Hybrid optimization models in geotechnical applications. Eng. Comput. 39, 889–905 (2022).
Noura, M., Boutouil, M. & Amziane, S. Valorization of dredged sediments for road construction: A sustainable approach. Transp. Geotech. 33, 100755 (2022).
Zhao, H., Zhang, Y. & Xu, L. Study of mechanical properties of dredged soils stabilized with lime and geopolymers. Mar. Georesour. Geotechnol. 42, 342–352 (2024).
Li, X., Zhang, Y. & Xu, W. Statistical modeling of geotechnical data using response surface techniques. Comput. Geotech. 141, 104529 (2022).
Xu, L., Wang, Y. & Zhang, Q. Design optimization in geotechnical engineering using artificial intelligence and RSM. J. Geotech. Eng. 45, 289–305 (2024).
Boukhatem, G. et al. Optimization of clayey soil parameters with aeolian sand through response surface methodology and a desirability function. Sci. Rep. 15, 30831. https://doi.org/10.1038/s41598-025-99971-0 (2025).
Funding
This work was carried out without financial support from any public, commercial, or non-profit funding organization.
Author information
Authors and Affiliations
Contributions
G.B.: Conceptualization; Data curation; formal analysis; investigation; methodology; project administration; resources; software; supervision; validation; M.B.: Conceptualization; data curation; formal analysis; resources; software; supervision; validation; S.R.B.: Investigation; methodology; project administration; resources; M.S.K.: Conceptualization, methodology, validation, formal analysis, resources, data curation, writing—original draft, writing—review and editing, visualization, supervision, project administration, investigation; KR: Conceptualization, methodology, validation, formal analysis, resources, data curation, writing—original draft, writing—review and editing, visualization, supervision, project administration; D.M.: Conceptualization, methodology, validation, formal analysis, resources, data curation, writing—original draft, writing—review and editing, visualization.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Boukhatem, G., Bencheikh, M., Bekkouche, S.R. et al. Data-driven optimization and pressuremeter modulus prediction using response surface methodology for smarter geotechnical design. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36262-2
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-36262-2