Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Emerging heat stress patterns across India under future climate scenarios
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 16 January 2026

Emerging heat stress patterns across India under future climate scenarios

  • M. O. Molina1,
  • P. M. M. Soares1,
  • A. Agarwal2,3 &
  • …
  • R. M. Trigo1,4 

Scientific Reports , Article number:  (2026) Cite this article

  • 1461 Accesses

  • 1 Citations

  • 5 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate sciences
  • Environmental sciences

Abstract

This study investigates the climate change signal on mean and extreme temperatures in India, adding new insight by using the state-of-the-art CMIP6 projections to quantify the seasonal and spatial evolution of the Heat Index (HI) across India.; offering one of the first national-scale assessments combining temperature and humidity under Shared Socioeconomic Pathways (SSPs) scenarios. To assess the recent past climate change signal on those properties, ERA5 reanalysis data are used. CMIP6 models realistically reproduce historical warming patterns during winter (DJF) and pre-monsoon (MAM) seasons but tend to underestimate extreme summer (JJA) conditions. Future daily HI is calculated from maximum temperature and relative humidity from CMIP6 global climate models (GCMs). Future projections indicate a substantial increase in both the frequency and persistence of dangerous HI levels across India, driven by rising temperatures and regionally variable humidity trends. By mid-21st century (2041–2070), the annual number of days with dangerously high HI values (27º and 32 °C) is projected to rise by more than 50 and 5 days, respectively, compared to 1971–2000. By the late century (2071–2100) under the SSP5-8.5 scenario, the HI will be above 27 °C (32 °C) during more than 75 (75) absolute days per year in JJA and more than 75 (20) days in MAM. Critical HI days will be highest in coastal regions in winter and more northern regions in summer, increasing towards northern latitudes with the emission scenario. These findings underscore the importance of region-specific adaptation strategies, as heat stress future anomalies will differ across India. Understanding these spatiotemporal patterns is critical for effective climate adaptation and public health policies aimed at mitigating the increasing risks associated with extreme heat events.

Data availability

The data cannot be made publicly available upon publication because no suitable repository exists for hosting data in this field of study. The data that support the findings of this study are available upon reasonable request from M.O. Molina (mosanchez@ciencias.ulisboa.pt).

References

  1. Patterson, M. North-west Europe hottest days are warming twice as fast as mean summer days. Geophys. Res. Lett. 50, e2023GL102757 (2023).

    Google Scholar 

  2. Schmidt, G. World view. Nature 627, 467 (2024).

    Google Scholar 

  3. Molina, M. O. et al. Updated insights on climate change-driven temperature variability across historical and future periods. Clim. Change. 178 (5), 97 (2025).

    Google Scholar 

  4. Alvarez, I., Diaz-Poso, A., Lorenzo, M. N. & Roye, D. Heat index historical trends and projections due to climate change in the mediterranean basin based on CMIP6. Atmos. Res. 308, 107512 (2024).

    Google Scholar 

  5. Eekhout, J. P. C., Nunes, J. P., Tramblay, Y. & de Vente, J. Severe impacts on water resources projected for the mediterranean basin. Wiley Interdiscipl. Rev. Water 12 (2), e70012 (2025).

  6. Dahl, T. A., Lusk, D., Vizuete, W., Buser, J. & Spero, T. An air quality and public health perspective for the future of the epa’s air quality index. J. Air Waste Manage. Assoc. 69 (1), 1–13 (2019).

    Google Scholar 

  7. Sabater, S. et al. Extreme weather events threaten biodiversity and functions of river ecosystems: evidence from a meta‐analysis. Biol. Rev. 98 (2), 450–461 (2023).

    Google Scholar 

  8. Nath, R., Nath, D. & Chen, W. Projected changes in extreme hot summer events in Asian monsoon regions. Npj Clim. Atmospheric Sci. 7 (1), 188 (2024).

    Google Scholar 

  9. Carleton, T. et al. Valuing the global mortality consequences of climate change accounting for adaptation costs and benefits. Q. J. Econ. 137, 2037–2105 (2022).

    Google Scholar 

  10. Coffel, E. D., Horton, R. M. & De Sherbinin, A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ. Res. Lett. 13 (1), 014001 (2017).

    Google Scholar 

  11. Horton, R. M., Mankin, J. S., Lesk, C., Coffel, E. & Raymond, C. A review of recent advances in research on extreme heat events. Curr. Clim. Change Rep. 2, 242–259 (2016).

    Google Scholar 

  12. Di Napoli, C., Pappenberger, F. & Cloke, H. L. Verification of heat stress thresholds for a health-based heat-wave definition. J. Appl. Meteorol. Climatol. 58 (6), 1177–1194 (2019).

    Google Scholar 

  13. Blazejczyk, K., Epstein, Y., Jendritzky, G., Staiger, H. & Tinz, B. Comparison of UTCI to selected thermal indices. Int. J. Biometeorol. 56, 515–535 (2012).

    Google Scholar 

  14. Raymond, C., Singh, D. & Horton, R. Spatiotemporal patterns and synoptics of extreme wet-bulb temperature in the contiguous united States. J. Geophys. Res. Atmos. 122, 13–108 (2017).

    Google Scholar 

  15. Heo, S., Bell, M. L. & Lee, J. T. Comparison of health risks by heat wave definition: applicability of wet-bulb Globe temperature for heat wave criteria. Environ. Res. 168, 158–170 (2019).

    Google Scholar 

  16. Kjellström, T., Maître, N., Saget, C., Otto, M. & Karimova, T. Working on a Warmer Planet: the Effect of Heat Stress on Productivity and Decent Work (International Labour Organization, 2019).

  17. McGregor, G. R. & Vanos, J. K. Heat: a primer for public health researchers. Public. Health. 161, 138–146 (2018).

    Google Scholar 

  18. Sherwood, S. C. How important is humidity in heat stress? J. Geophys. Res. Atmos. 123, 11–808 (2018).

    Google Scholar 

  19. Zhu, J., Wang, S. & Huang, G. Assessing climate change impacts on human-perceived temperature extremes and underlying uncertainties. J. Geophys. Res. Atmos. 124, 3800–3821 (2019).

    Google Scholar 

  20. Fischer, E. M. & Schär, C. Consistent geographical patterns of changes in high-impact European heatwaves. Nat. Geosci. 3, 398–403 (2010).

    Google Scholar 

  21. Pal, J. S. & Eltahir, E. A. Future temperature in Southwest Asia projected to exceed a threshold for human adaptability. Nat. Clim. Change. 6, 197–200 (2016).

    Google Scholar 

  22. Russo, S., Sillmann, J. & Sterl, A. Humid heat waves at different warming levels. Sci. Rep. 7, 7477 (2017).

    Google Scholar 

  23. de Freitas, C. R. & Grigorieva, E. A. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int. J. Biometeorol. 61, 487–512 (2017).

    Google Scholar 

  24. Anderson, G. B., Bell, M. L. & Peng, R. D. Methods to calculate the heat index as an exposure metric in environmental health research. Environ. Health Perspect. 121 (10), 1111–1119 (2013).

    Google Scholar 

  25. Broede, P. et al. The universal thermal climate index UTCI compared to ergonomics standards for assessing the thermal environment. Ind. Health. 51 (1), 16–24 (2013).

    Google Scholar 

  26. Steadman, R. G. The assessment of sultriness. Part I: a temperature-humidity index based on human physiology and clothing science. J. Appl. Meteorol. Climatol. 18, 861–873 (1979).

    Google Scholar 

  27. Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26 (13), 4500–4517 (2013).

    Google Scholar 

  28. Jin, Q. & Wang, C. A revival of Indian summer monsoon rainfall since 2002. Nat. Clim. Change. 7, 587–594 (2017).

    Google Scholar 

  29. Joseph, L., Skliris, N., Dey, D., Marsh, R. & Hirschi, J. Increased summer monsoon rainfall over Northwest India caused by Hadley cell expansion and Indian ocean warming. Geophys. Res. Lett. 51, e2024GL108829 (2024).

  30. Shukla, K. K. & Attada, R. CMIP6 models informed summer human thermal discomfort conditions in Indian regional hotspot. Sci. Rep. 13, 12549 (2023).

    Google Scholar 

  31. Kumar, P., Rai, A., Upadhyaya, A. & Chakraborty, A. Analysis of heat stress and heat wave in the four metropolitan cities of India in recent period. Sci. Total Environ. 818, 151788 (2022).

    Google Scholar 

  32. Kothawale, D., Revadekar, J. V. & Rupa Kumar, K. Recent trends in pre-monsoon daily temperature extremes over India. J. Earth Syst. Sci. 119, 51–65 (2010).

    Google Scholar 

  33. Ma, Y. et al. Effects of extreme temperatures on hospital emergency room visits for respiratory diseases in Beijing, China. Environ. Sci. Pollut. Res. 26, 3055–3064 (2019).

    Google Scholar 

  34. Rocque, R. J. et al. Health effects of climate change: an overview of systematic reviews. BMJ open. 11, e046333 (2021).

    Google Scholar 

  35. Norgate, M., Tiwari, P. R., Das, S. & Kumar, D. On the heat waves over India and their future projections under different SSP scenarios from CMIP6 models. Int. J. Climatol. 44 (3), 973–995 (2024).

    Google Scholar 

  36. Dubey, S. K., Singh, R., Singh, S. K. & Maurya, S. K. Heatwave projections over India under different SSP scenarios using CMIP6 models. Environ. Res. Lett. 18 (6), 064018 (2023).

    Google Scholar 

  37. Molina, M., Sánchez, E. & Gutiérrez, C. Future heat waves over the mediterranean from an Euro-CORDEX regional climate model ensemble. Sci. Rep. 10, 8801 (2020).

    Google Scholar 

  38. Mukherjee, S. & Mishra, V. A sixfold rise in concurrent day and night-time heatwaves in India under 2ºC warming. Sci. Rep. 8, 16922 (2018).

    Google Scholar 

  39. Ramarao, M. et al. Projected changes in heatwaves over central and South America using high-resolution regional climate simulations. Sci. Rep. 14, 23145 (2024).

    Google Scholar 

  40. Hersbach, H. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 146, 1999–2049 (2020).

    Google Scholar 

  41. Hersbach, H. et al. Global reanalysis: goodbye ERA-Interim, hello ERA5. ECMWF Newsl. 2019, 17–24 (2019).

  42. Eyring, V. et al. Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).

    Google Scholar 

  43. Taylor, K. E. Truly conserving with Conservative remapping methods. Geosci. Model Dev. 17 (1), 415–430. https://doi.org/10.5194/gmd-17-415-2024 (2024).

    Google Scholar 

  44. Srivastava, A. K., Rajeevan, M. & Kshirsagar, S. R. Development of a high resolution daily gridded temperature data set (1969–2005) for the Indian region. Atmospheric Sci. Lett. 10 (4), 249–254 (2009).

    Google Scholar 

  45. Rohit, N. & N., C. Development of high Spatial resolution weather data using daily meteorological observations over Indian region. MAUSAM (2021). https://doi.org/10.54302/mausam.v71i4.43.

  46. Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl. Acad. Sci. U S A. 109 (47), E2415–E2423 (2012).

    Google Scholar 

  47. Jain, M., Kumar, D., Kumar, P. & Singh, N. Assessing the reliability of CMIP6 climate models in simulating heatwave characteristics over India. J. Earth Syst. Sci. 132 (1), 127 (2023).

    Google Scholar 

  48. Almazroui, M., Islam, M. N., Saeed, S., Saeed, F. & Ismail, M. Future changes in climate over the Arabian Peninsula based on CMIP6 multimodel simulations. Earth Syst. Environ. 4, 611–630 (2020).

    Google Scholar 

  49. Zha, J. et al. Projected changes in global terrestrial near-surface wind speed in 1.5°C–4.0°C global warming levels. Environ. Res. Lett. 2021, 16. https://doi.org/10.1088/1748-9326/ac2fdd (2021).

  50. Tebaldi, C. et al. Climate model projections from the scenario model intercomparison project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. https://doi.org/10.5194/ESD-12-253-2021 (2020).

    Google Scholar 

  51. IPCC. Climate change : impacts, adaptation, and vulnerability. In Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2022).

  52. Rothfusz, L. P., & Headquarters, N. S. R. (1990). The heat index equation (or, more than you ever wanted to know about heat index). Fort Worth, Texas: National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, 9023, 640.

  53. Rothfusz, L. P. The heat index equation (2019, accessed 2 Dec 2024). https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml.

  54. Brimicombe, C. et al. Thermofeel: a python thermal comfort indices library. SoftwareX 18, 101005 (2022).

    Google Scholar 

  55. Vaidyanathan, A. et al. Assessment of extreme heat and hospitalizations to inform early warning systems. Proc. Natl. Acad. Sci. 116 (12), 5420–5427 (2019).

    Google Scholar 

  56. Hunter, J. D. Matplotlib: a 2D graphics environment. Comput. Sci. Eng. 9 (03), 90–95 (2007).

    Google Scholar 

  57. Screen, J. A. & Simmonds, I. The atmospheric response to Arctic sea-ice loss in the CMIP5 climate models. J. Clim. 27, 4775–4793 (2014).

    Google Scholar 

  58. Cohen, J. et al. Arctic sea-ice loss and the mid-latitude winter climate. Nat. Clim. Change. 8 (3), 253–261 (2018).

    Google Scholar 

  59. Krishnan, R. et al. Unprecedented warming in the Hindu Kush himalaya. Nat. Clim. Change. 9 (1), 86–92 (2019).

    Google Scholar 

  60. Dimri, A. P., Singh, M., Niyogi, D. & Krishnan, R. Weather and climate extremes over the Hindu Kush himalaya: present status and future projections. Earth Sci. Rev. 222, 103822 (2021).

    Google Scholar 

  61. J Parker, D. et al. The interaction of moist convection and mid-level dry air in the advance of the onset of the Indian monsoon. Q. J. R. Meteorol. Soc. 142 (699), 2256–2272 (2016).

    Google Scholar 

  62. Roxy, M. K., Ritika, C., Terray, P. & Murtugudde, R. Drying of Indian Subcontinent is already underway. Nat. Commun. 6, 7306 (2015).

    Google Scholar 

  63. Mishra, V., Thirumalai, K., Singh, D. & Aadhar, S. Future exacerbation of hot and dry summer monsoon extremes in India. Npj Clim. Atmospheric Sci. 3 (1), 10 (2020).

    Google Scholar 

  64. Overland, J. E., Zhang, X. & Walsh, J. E. Arctic amplification: its role in middle-latitude climate change. Earth Sci. Rev. 191, 150–165 (2019).

    Google Scholar 

  65. Dutta, U. et al. Unraveling the global teleconnections of Indian summer monsoon clouds: expedition from CMIP5 to CMIP6. Glob. Planet Change. 215, 103873 (2022).

    Google Scholar 

  66. Molina, M. O. et al. The added value of simulated near-surface wind speed over the Alps from a km-scale multimodel ensemble. Clim. Dyn. 62 (6), 4697–4715 (2024).

  67. Raghuvanshi, S., Dimri, A. P. & Sinha, V. Changes in spatio-temporal characteristics of extreme rainfall events over India under different SSPs. J. Geophys. Res. Atmos. 129 (1), e2023JD039757 (2024).

    Google Scholar 

  68. Raymond, C., Matthews, T. & Horton, R. M. The emergence of heat and humidity too severe for human tolerance. Sci. Adv. 6 (19), eaaw1838 (2020).

    Google Scholar 

  69. Rohini, P., Rajeevan, M. & Srivastava, A. K. On the variability and increasing trends of heat waves over India. Sci. Rep. 6 (1), 1–9 (2016).

    Google Scholar 

  70. Mazdiyasni, O. et al. Increasing probability of mortality during Indian heat waves. Sci. Adv. 3 (6), e1700066 (2017).

  71. Sardana, D. & Agarwal, A. Impact of spring sea ice variability in the Barents–Kara region on the Indian summer monsoon rainfall. Sci. Rep. 15, 37790 (2025).

    Google Scholar 

  72. Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Chang. 5, 424–430 (2015).

    Google Scholar 

  73. Praveen, B. et al. Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci. Rep. 10 (1), 10342 (2020).

  74. Choudhary, R. K. et al. Excess mortality risk due to heat stress in different climatic zones of India. Environ. Sci. Technol. 58 (1), 342–351 (2023).

  75. Gusain, A., Ghosh, S. & Karmakar, S. Added value of CMIP6 over CMIP5 models in simulating Indian summer monsoon rainfall. Atmos. Res. 232, 104680 (2020).

    Google Scholar 

  76. Singh, R. N. et al. Innovative trend analysis of spatio-temporal variations of rainfall in India during 1901–2019. Theoret. Appl. Climatol. 145 (1–2), 821–838 (2021).

    Google Scholar 

  77. Saha, M. & Singh, C. Evaluation of the characteristics of Indian summer monsoon simulated by CMIP6 models. Int. J. Climatol. 44 (9), 2833–2851 (2024).

    Google Scholar 

  78. Basha, G. et al. Historical and projected surface temperature over India during the 20th and 21st century. Sci. Rep. 7 (1), 2987 (2017).

    Google Scholar 

  79. Guntu, R. K., Merz, B. & Agarwal, A. Increased likelihood of compound dry and hot extremes in India. Atmos. Res. 290, 106789 (2023).

    Google Scholar 

  80. Ren, Y. Y. et al. Observed changes in surface air temperature and precipitation in the Hindu Kush Himalayan region over the last 100-plus years. Adv. Clim. Change Res. 8 (3), 148–156 (2017).

    Google Scholar 

  81. Kushwaha, R., Kumar, P. & Hisaki, Y. Global future heat stress projections: regional variations of humidex changes from high-resolution CMIP6 models. Atmos. Res. 2025, 108367 (2025).

  82. Li, D., Yuan, J. & Kopp, R. E. Escalating global exposure to compound heat-humidity extremes with warming. Environ. Res. Lett. 15 (6), 064003 (2020).

    Google Scholar 

  83. Fischer, E. M. & Knutti, R. Robust projections of combined humidity and temperature extremes. Nat. Clim. Change. 3, 126–113 (2013).

    Google Scholar 

  84. Kysely, J. & Kim, J. Mortality during heat waves in South Korea, 1991 to 2005: how exceptional was the 1994 heat wave? Climate Res. 38 (2), 105–116 (2009).

    Google Scholar 

  85. Zanobetti, A. & Schwartz, J. Air pollution and emergency admissions in Boston, MA. J. Epidemiol. Community Health. 60 (10), 890–895 (2006).

    Google Scholar 

  86. Di Napoli, C., Barnard, C., Prudhomme, C., Cloke, H. L. & Pappenberger, F. ERA5-HEAT: a global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geosci. Data J. 8 (1), 2–10 (2021).

    Google Scholar 

  87. Dahl, K., Licker, R., Abatzoglou, J. T. & Declet-Barreto, J. Increased frequency of and population exposure to extreme heat index days in the united States during the 21st century. Environ. Res. Commun. 1 (7), 075002 (2019).

    Google Scholar 

  88. Hoang, T. L. T. et al. Assessing heat index changes in the context of climate change: a case study of Hanoi (Vietnam). Front. Earth Sci. 10, 897601. https://doi.org/10.3389/feart.2022.897601 (2022).

    Google Scholar 

  89. Maraun, D. et al. Towards process-informed bias correction of climate change simulations. Nat. Clim. Change 7 (11), 764–773 (2017).

  90. Nahar, J., Johnson, F. & Sharma, A. Addressing Spatial dependence bias in climate model simulations—an independent component analysis approach. Water Resour. Res. 54 (2), 827–841 (2018).

    Google Scholar 

  91. Zhang, H., Chapman, S., Trancoso, R., Toombs, N. & Syktus, J. Assessing the impact of bias correction approaches on climate extremes and the climate change signal. Meteorol. Appl. 31 (3), e2204 (2024).

  92. Velpuri, M., Das, J. & Umamahesh, N. Spatio-temporal compounding of connected extreme events: projection and hotspot identification. Environ. Res. 235, 116615 (2023).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the Portuguese Fundação para a Ciência e Tecnologia, FCT, I.P./MCTES through national funds (PIDDAC): UID/50019/2023 , LA/P/0068/2020 e UID/50019/2025 https://doi.org/10.54499/LA/P/0068/2020) and https://doi.org /10.54499/UID/PRR/50019/2025. M.O. Molina was supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) through the DRI/India/0098/2020 project (https://doi.org/10.54499/DRI/India/0098/2020), the Instituto Dom Luiz through the UID/PRR/50019/2025 (https://doi.org/10.54499/UID/PRR/50019/2025), and by the Horizon Europe research and innovation programs under grant agreement no. 101081661 (WorldTrans). AA extends thanks to the Anusandhan National Research Foundation for the research grant (CRG/2023/003449) facilitated at IIT Roorkee.

Funding

This work is supported by the Portuguese Fundação para a Ciência e Tecnologia, FCT, I.P./MCTES through national funds (PIDDAC): UID/50019/2023, LA/P/0068/2020 e UID/50019/2025 https://doi.org/10.54499/LA/P/0068/2020) and https://doi.org/10.54499/UID/PRR/50019/2025. M.O. Molina was supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT) through the DRI/India/0098/2020 project (https://doi.org/10.54499/DRI/India/0098/2020), the Instituto Dom Luiz through the UID/PRR/50019/2025 (https://doi.org/10.54499/UID/PRR/50019/2025), and by the Horizon Europe research and innovation programs under grant agreement no. 101081661 (WorldTrans). AA extends thanks to the Anusandhan National Research Foundation for the research grant (CRG/2023/003449) facilitated at IIT Roorkee.

Author information

Authors and Affiliations

  1. IDL - Instituto Dom Luiz, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal

    M. O. Molina, P. M. M. Soares & R. M. Trigo

  2. Department of Hydrology, Indian Institute of Technology, Roorkee, 247667, India

    A. Agarwal

  3. Section 4.4: Hydrology, GFZ German Research Centre for Geosciences, 14473, Postdam, Germany

    A. Agarwal

  4. Departamento de Meteorologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

    R. M. Trigo

Authors
  1. M. O. Molina
    View author publications

    Search author on:PubMed Google Scholar

  2. P. M. M. Soares
    View author publications

    Search author on:PubMed Google Scholar

  3. A. Agarwal
    View author publications

    Search author on:PubMed Google Scholar

  4. R. M. Trigo
    View author publications

    Search author on:PubMed Google Scholar

Contributions

M.O. Molina contributed in the conceptualization, methodology, formal analysis, writing and discussion.PM Soares and R. Trigo contributed in the conceptualization, methodology, writing and discussion.AA contributed in the methodology, writing and discussion.

Corresponding author

Correspondence to M. O. Molina.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molina, M.O., Soares, P.M.M., Agarwal, A. et al. Emerging heat stress patterns across India under future climate scenarios. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36299-3

Download citation

  • Received: 01 July 2025

  • Accepted: 12 January 2026

  • Published: 16 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36299-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Heat-index
  • CMIP6
  • India
  • Climate change
  • Extremes
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene