Abstract
Numerous studies focused on the technical limitations of Landslides Susceptibility Maps (LSM). They were concerned with the impact of LSM technique selection, conditioning factor combinations, and/or Landslides Inventory Map (LIM) practices on LSM sensitivity. However, no previous papers focused on study area selection and its influence on the output. In fact, most authors subdivide their study area into administrative/political territories, which may be useful for decision makers but is not very informative from a pure scientific stand point. Therefore, 3 territories of Northern Morocco were investigated in this study: the first corresponds to the 1:50 000 Tetouan topographic map (cartographic), the second covers Martil watershed (geomorphological) and the third is Tetouan province (political). The latter study area is of capital importance given its two contrasted geological and morphotectonic domains (Internal and External Rif), which may produce errors in the output. The input LIM datasets for the purpose of this study are: new-active LIM, Inactive-young LIM, Relict LIM, and all landslides LIM. We used two conventional LSM algorithms (Logistic Regression and Artificial Neural Networks) in order to avoid technique-specific biases. Our results show that study area selection is not as important as LIM with regard to the output LSMs, but remains very relevant in determining LSM distribution and accuracy for Tetouan map and Martil watershed study areas. As for Tetouan province, the model is unchanged using the same LIM in the External Rif but changes significantly in the Internal Rif. Our LSM analyses also revealed the link between landslides age and elevation in the External Rif domain where relict processes are mostly concentrated in mid-slopes while new-active ones occur in lower slopes. This is not observed in the Internal Rif, which further exhibits the importance of study area selection based on naturally delimited geomorphological units rather than political or cartographic boundaries.
Similar content being viewed by others
Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.
References
Carrara, A. et al. Landslide morphometry and typology in two zones, Calabria, Italy. Bull Int. Assoc. Eng. Geol. L’Association Int. Géologie l’Ingénieur, 16, 1, 8–13, 1977.
Nilsen, T. H. & Brabb, E. E. Slope-stability Studies in the San Francisco Bay Region (California, 1977).
Newman, E. B., Paradis, A. R. & Brabb, E. E. Feasibility and Cost of Using a Computer To Prepare Landslide Susceptibility Maps of the San Francisco Bay region, California 1443 (US Department of the Interior, 1977).
Wieczorek, G. F. Landslide susceptibility evaluation in the Santa Cruz range (San Mateo county, 1980).
Sharpe, C. F. Landslides and related phenomena: a study of mass-movements of soil and rock. (No Title), (1938).
Varnes, D. J. Landslide types and processes. Landslides Eng. Pract. 24, 20–47 (1958).
Varnes, D. Slope movement types and processes. Spec. Rep. 176, 11–33 (1978).
McCalpin, J. Preliminary age classification of landslides for inventory mapping, in Conference: proceedings of the 21st engineering geology and soils engineering symposium, 99–111. (1984).
Keefer, D. K. A model for earthflow., Géol. Soc. Amer., Abstr. Programs; U.S.A., 9, 7, 045–1046, 1977.
Keefer, D. K. Landslides caused by earthquakes | GSA bulletin | geoscienceworld. GSA Bull. 95 (4), 406–421 (1984).
Baum, R. L., Reid, M. E., Wilburn, C. A. & Torikai, J. D. Summary of Geotechnical and Hydrologic Data Collected from May 1, 1990 Through April 30, 1991, for the Alani-Paty landslide, Manoa Valley, Honolulu, Hawaii ( Dept. of the Interior, US Geological Survey, 1991).
Savage, W. Z. & Smith, W. K. A model for the plastic flow of landslides. US Geol. Surv. Prof. Pap, 1385, (1986).
Carlini, M. et al. Tectonic control on the development and distribution of large landslides in the Northern apennines (Italy). Geomorphology 253, 425–437 (2016).
Bounab, A., El Kharim, Y., Hamdouni, R. E. & Hlila, R. A multidisciplinary approach to study slope instability in the Alboran sea shoreline: study of the Tamegaret deep-seated slow-moving landslide in Northern Morocco. J. Afr. Earth Sci. 184, 104345 (2021).
Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M. & Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 180, 60–91 (2018).
Haque, U. et al. The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci. Total Environ. 682, 673–684 (2019).
Haque, U. et al. Fatal landslides in Europe. Landslides 13 (6), 1545–1554 (2016).
Guzzetti, F. Landslide fatalities and the evaluation of landslide risk in Italy. Eng. Geol. 58 (2), 89–107 (2000).
Froude, M. J. & Petley, D. N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 18 (8), 2161–2181 (2018).
Mastere, M. Mass Movement Hazard Assessment at a Medium Scale Using the Weight of Evidence Model and Neo-Predictive Variables Creation. In Mapping and Spatial Analysis of Socio-Economic and Environmental Indicators for Sustainable Development; Rebai, N., Mastere, M., Eds.; Advances in Science, Technology, and Innovation; Springer: Cham, Switzerland, 2020. (2020). https://doi.org/10.1007/978-3-030-21166-0_7
Bonham-Carter, G. F. Weights of evidence modeling: a new approach to mapping mineral potential. Stat Appl. Earth Sci,171–183, (1989).
Brabb, E. E., Pampeyan, E. H. & Bonilla, M. G. Landslide Susceptibility in San Mateo County (California, US Geological Survey, 1972).
Lee, S. Current and future status of GIS-based landslide susceptibility mapping: a literature review. Korean J. Remote Sens. 35 (1), 179–193 (2019).
Pereira, S., Zêzere, J. L. & Bateira, C. Technical note: assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat. Hazards Earth Syst. Sci. 12 (4), 979–988 (2012).
Chang, K. T., Merghadi, A., Yunus, A. P., Pham, B. T. & Dou, J. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques, Sci. Rep., 9, 1, 1–21, (2019).
Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A. & Mansor, S. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics Nat. Hazards Risk. 9 (1), 49–69 (2018).
Bounab, A., Agharroud, K., El Kharim, Y., Hamdouni, R. E. & Faghloumi, L. The importance of investigating causative factors and training data selection for accurate landslide susceptibility assessment: the case of Ain Lahcen commune (Tetouan, Northern Morocco. Geocarto Int. 37 (25), 9967–9997 (2022).
Sahrane, R., Bounab, A. & Kharim, Y. E. L. Investigating the effects of landslides inventory completeness on susceptibility mapping and frequency-area distributions: case of taounate province, Northern Morocco. Catena 220, 106737 (2023).
de Oliveira, G. G., Ruiz, L. F. C., Guasselli, L. A. & Haetinger, C. Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão river Basin, Southern Brazil. Nat. Hazards. 99 (2), 1049–1073 (2019).
Aditian, A., Kubota, T. & Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 318, 101–111 (2018).
Kavzoglu, T., Sahin, E. K. & Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11 (3), 425–439 (2014).
Lee, S. & Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4 (1), 33–41 (2007).
Boukhres, N. et al. A comparative modeling of landslides susceptibility at a meso-scale using frequency ratio and analytic hierarchy process models in geographic information system: the case of African alpine mountains (Rif, Morocco). Model. Earth Syst. Environ. 9, 1949–1975 (2022).
Shahabi, H., Khezri, S., Bin Ahmad, B. & Hashim, M. Landslide susceptibility mapping at central Zab basin, iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 115, 55–70 (2014).
Obda, I. et al. Landslide susceptibility mapping using GIS matrix method and frequency Ratio, application in the Marly context of moulay Yacoub Region, Morocco. BSGF-Earth Sci. Bull. 195 (1), 1 (2024).
Li, D. et al. Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: comparisons with multilayer-perceptron-only, Bp neural network, and information value models. Appl. Sci. 9 (18), 3664 (2019).
Benchelha, S. et al. Landslide susceptibility mapping in the commune of Oudka, taounate Province, North morocco: A comparative analysis of logistic regression, multivariate adaptive regression Spline, and artificial neural network models. Environ. Eng. Geosci. 26 (2), 185–200 (2020).
Sahrane, R., Kharim, Y. E. & Bounab, A. Investigating the effects of landscape characteristics on landslide susceptibility and Frequency-area distributions: the case of Taounate province, Northern Morocco., Geocarto Int., 0, 1–22, (2022).
Trafimow, D. The Attenuation of correlation coefficients: A statistical literacy issue. Teach. Stat. 38 (1), 25–28 (2016).
Jakob, M. & Lambert, S. Climate change effects on landslides along the Southwest Coast of British Columbia. Geomorphology 107, 3–4 (2009).
Chiang, S. H. & Chang, K. T. The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099, Geomorphology, 133, 3–4, 143–151, (2011).
Didon, J., Durand-Delga, M. & Kornprobst, J. Homologies géologiques entre les Deux Rives du détroit de Gibraltar. Bull. la. Soc. géologique Fr. 7 (2), 77–105 (1973).
Durand-Delga, M. Données Actuelles Sur La Structure Du Rif (En vente à la Société géologique de France, 1961).
Durand Delga, M. & Kornprobst, J. Esquisse géologique de La région de Ceuta (Maroc). Bull. la. Société Géologique Fr. 7 (7), 1049–1057 (1963).
Negro, F., Beyssac, O., Goffé, B., Saddiqi, O. & Bouybaouène, M. L. Thermal structure of the Alboran domain in the Rif (northern Morocco) and the Western betics (southern Spain). Constraints from Raman spectroscopy of carbonaceous material. J Metamorph Geol, 24, 4, (2006).
Michard, A. et al. Pressure–temperature–time constraints on the maghrebide mountain building: evidence from the Rif–Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. Comptes Rendus Geosci. 338, 1–2 (2006).
Mrihi, A. E. Structures alpines des zones externes et des nappes de flyschs à l’ouest de la chaîne du Haouz (Rif septentrional, maroc), Univ. Mohammed V Rabat, Morocco, (1995).
El Talibi, H. et al. Sedimentary evolution of the siliciclastic Aptian–Albian Massylian flysch of the chouamat nappe (central Rif, Morocco). J. Afr. Earth Sci. 100, 554–568 (2014).
Bouillin, J. P. et al. Définition d’un flysch Massylien et d’un flysch maurétanien Au Sein des flyschs allochtones de l’Algérie. CR Acad. Sci. 270, 2249–2252 (1970).
Durand-Delga, M., Rossi, P., Olivier, P. & Puglisi, D. Situation structurale et nature ophiolitique de roches basiques jurassiques associées aux flyschs maghrébins du Rif (Maroc) et de Sicile (Italie), Comptes Rendus l’Académie des Sci. IIA-Earth Planet. Sci., 331, 1, 29–38, (2000).
Romagny, A. Évolution des mouvements verticaux néogènes de La chaîne du Rif (nord-maroc): apports d’une analyse structurale et thermochronologique. Université Nice Sophia Antipolis, (2014).
Gharbaoui, A. E. Note preliminaire Sur l’evolution geomorphologique de La peninsule de Tanger. Bull. la. Société Géologique Fr. S7-XIX (3), 615–622 (1977).
Bounab, A. Multi-source analysis for the study of landslides on both sides of the Northern dorsale calcaire: cartography and modelling. Abdelmaalek Essaadi, (2022).
Kharim, Y. E. Etude des mouvements de versants Dans La région de Tétouan (Rif occidental): Inventaire, analyse et cartographie. Thèse Dr d’Etat ès Sci, 20p1, (2002).
Sahrane, R. et al. Assessing the reliability of landslides susceptibility models with limited data: impact of Geomorphological diversity and technique selection on model performance in taounate Province, Northern Morocco. Earth Syst. Environ, 1–25, (2024).
Obda, O., El Kharim, Y., Obda, I., Ahniche, M. & Sahrane, R. Landslide susceptibility assessment and factors’ selection using the GIS matrix method (GMM) in Chefchaouen Province (Northern Morocco), In: International Conference on Mediterranean Geosciences Union,197–199. (2021).
Fonseca, A. Large deep-seated landslides in the Northern Rif mountains (Northern Morocco): inventory and analysis, 195, (2014).
Amatya, P., Kirschbaum, D. & Stanley, T. Rainfall-induced landslide inventories for lower Mekong based on planet imagery and a semi-automatic mapping method. Geosci Data J, (2022).
Marc, O. & Hovius, N. Amalgamation in landslide maps: effects and automatic detection. Nat. Hazards Earth Syst. Sci. 15 (4), 723–733 (2015).
Qi, W., Wei, M., Yang, W., Xu, C. & Ma, C. Automatic mapping of landslides by the ResU-Net. Remote Sens. 12 (15), 2487 (2020).
Martha, T. R., van Westen, C. J., Kerle, N., Jetten, V. & Kumar, K. V. Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology 184, 139–150 (2013).
Boukhres, N. et al. Mass movement inventory map of the Dhar Souk region and its main Spatial morphometric characteristics. Bull. L’Institut Sci. Sect. Sci. Terre. 46, 15–39 (2024).
Cruden, D. M., ., D. & Varnes, J. Landslide types and processes, special report, transportation research board, national academy of sciences, United States Geol. Surv., 247, 36–75, 1996. (1996).
Guzzetti, F., Malamud, B. D., Turcotte, D. L. & Reichenbach, P. Power-law correlations of landslide areas in central Italy. Earth Planet. Sci. Lett. 195, 3–4 (2002).
Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G. & Demoulin, A. Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet. Sci. Lett. 256, 3–4 (2007).
Sahrane, R. et al. Landslide–Anthropogenic interactions in urban areas: A multidisciplinary case study from Taounate, Morocco. Geotech. Geol. Eng. 43 (6), 238 (2025).
Stark, C. P. & Hovius, N. The characterization of landslide size distributions. Geophys. Res. Lett. 28 (6), 1091–1094 (2001).
Mastere, M., El Fellah, B. & Maquaire, O. Landslide inventory map as a first step for hazard and risk assessment: Rif Mountains, Morocco. Bull. L’Institut Sci. Sect. Sci. Terre. 42, 49–62 (2020).
Bounab, A., El Kharim, Y., El Kharrim, M., Kharrim, A. E. & Sahrane, R. The performance of landslides frequency-area distribution analyses using a newly developed fully automatic tool. Appl. Geomatics. 16 (3), 789–796 (2024).
Qiu, H. et al. Comparing landslide size probability distribution at the landscape scale (Loess plateau and the Qinba Mountains, central China) using double Pareto and inverse gamma. Bull. Eng. Geol. Environ. 80 (2), 1035–1046 (2021).
Tanyaş, H., van Westen, C. J., Allstadt, K. E. & Jibson, R. W. Factors controlling landslide frequency–area distributions. Earth Surf. Process. Land. 44 (4), 900–917 (2019).
O’brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41 (5), 673–690 (2007).
Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop). 36 (1), 27–46 (2013).
Chen, W. et al. Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, Naive Bayes and RBFNetwork models for the long County area (China). Bull. Eng. Geol. Environ. 78 (1), 247–266 (2019).
Wang, Y., Fang, Z. & Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 666, 975–993 (2019).
Sar, N., Khan, A., Chatterjee, S., Das, A. & Mipun, B. S. Coupling of Analytical Hierarchy Process and Frequency Ratio Based Spatial Prediction of Soil Erosion Susceptibility in Keleghai River Basin (India. Elsevier, 2016).
Kavzoglu, T., Kutlug Sahin, E. & Colkesen, I. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat. Hazards. 76 (1), 471–496 (2015).
Othman, A. A. et al. Landslide susceptibility mapping in Mawat area, Kurdistan Region, NE iraq: a comparison of different statistical models. NHESD 3 (3), 1789–1833 (2015).
Pradhan, B. & Lee, S. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 25 (6), 747–759 (2010).
Dou, J., Yamagishi, H., Zhu, Z., Yunus, A. P. & Chen, C. W. TXT-tool 1.081-6.1 A comparative study of the binary logistic regression (BLR) and artificial neural network (ANN) models for GIS-based Spatial predicting landslides at a regional scale, in Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools: 1: Fundamentals, Mapping and Monitoring, Springer, 139–151. (2017).
Were, K., Bui, D. T., Dick, Ø. B. & Singh, B. R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 52, 394–403 (2015).
Svozil, D., Kvasnicka, V. & Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom Intell. Lab. Syst. 39 (1), 43–62 (1997).
Csáji, B. C. Approximation with artificial neural networks. Fac. Sci. Etvs Lornd Univ. Hung. 24 (48), 7 (2001).
Zeng-Wang, X. U. GIS and ANN model for landslide susceptibility mapping. J. Geogr. Sci. 11 (3), 374–381 (2001).
Budimir, M. E. A., Atkinson, P. M. & Lewis, H. G. A systematic review of landslide probability mapping using logistic regression. Landslides 12 (3), 419–436 (2015).
Othman, A. A., Gloaguen, R., Andreani, L. & Rahnama, M. Improving landslide susceptibility mapping using morphometric features in the Mawat area, Kurdistan Region, NE iraq: comparison of different statistical models. Geomorphology 319, 147–160 (2018).
Anderson, D. E., Goudie, A. & Parker, A. Global Environments Through the Quaternary: Exploring Evironmental Change (Oxford University Press, 2013).
Livingstone, D. A. Late quaternary Climatic change in Africa. Annu Rev. Ecol. Syst, 249–280, (1975).
Borrelli, L., Ciurleo, M. & Gullà, G. Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: the contribution of the weathering grade map. Landslides 15 (6), 1127–1142 (2018).
Zuva, K. Evaluation of information retrieval systems. Int. J. Comput. Sci. Inf. Technol. 4 (3), 35–43 (2012).
Swets, J. Measuring the accuracy of diagnostic systems, 1285–1293. (1988).
Yesilnacar, E. & Topal, T. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 79, 3–4 (2005).
Naghibi, S. A., Pourghasemi, H. R. & Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran, Environ. Monit. Assess. 188, 1, 1–27, 2015. (2015).
Bennett, G. L., Molnar, P., Eisenbeiss, H. & Mcardell, B. W. Erosional power in the Swiss alps: characterization of slope failure in the illgraben. Earth Surf. Process. Land. 37 (15), 1627–1640 (2012).
Dussauge-Peisser, C. et al. Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat. Hazards Earth Syst. Sci. 2 (1/2), 15–26 (2002).
Densmore, A. L., Ellis, M. A. & Anderson, R. S. Landsliding and the evolution of normal-fault-bounded mountains. J. Geophys. Res. Solid Earth. 103 (B7), 15203–15219 (1998).
Sugai, T., Ohmori, H. & Hirano, M. Rock control on magnitude-frequency distribution of landslide. Int. J. Rock. Mech. Min. Sci. Geomech. Abstracts. 3 (32), 116A (1995).
Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F. & Reichenbach, P. Comparing landslide inventory maps. Geomorphology 94, 3–4 (2008).
Segoni, S., Pappafico, G., Luti, T. & Catani, F. Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization. Landslides 17 (10), 2443–2453 (2020).
Breiman, L. Statistical modeling: the two cultures. Qual. Control Appl. Stat. 48 (1), 81–82 (2003).
Platt, J. P. & Vissers, R. L. M. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran sea and Gibraltar Arc. Geology 17 (6), 540–543 (1989).
Gharbaoui, A. E. Note préliminaire Sur l’évolution géomorphologique de La péninsule de Tanger. Bull. la. Société Géologique Fr. 7 (3), 615–622 (1977).
Gharbaoui, A. E. La Terre Et L’homme Dans La péninsule Tingitane: étude Sur L’homme Et Le Milieu Naturel Dans Le Rif Occidental 15 (Institut scientifique Rabat, 1981).
Rognon, P. Late quaternary Climatic reconstruction for the Maghreb (North Africa). Palaeogeogr Palaeoclimatol Palaeoecol. 58, 1–2 (1987).
Vesica, P. L. et al. Late pleistocene paleoclimates and sea-level change in the mediterranean as inferred from stable isotope and U-series studies of overgrowths on speleothems, Mallorca, Spain. Quat Sci. Rev. 19 (9), 865–879 (2000).
Millies-Lacroix, A. Les glissements de terrains. Présentation d’une Carte prévisionnelle des mouvements de masse Dans Le Rif (Maroc septentrional). Mines Et Géologie. 27, 45–55 (1968).
Trandafir, A. C., Ertugrul, O. L., Giraud, R. E. & McDonald, G. N. Geomechanics of a snowmelt-induced slope failure in glacial till. Environ. Earth Sci. 73 (7), 3709–3716 (2015).
Chiarelli, D. D., Galizzi, M., Bocchiola, D., Rosso, R. & Rulli, M. C. Modeling snowmelt influence on shallow landslides in Tartano valley, Italian alps. Sci. Total Environ. 856, 158772 (2023).
Milliés-Lacroix, A. Les glissements de terrain, présentation d’une Carte prévisionnelle des mouvements de masses Dans Le Rif (Maroc septentrional). Mines Et Géologie. 27, 45–54 (1965).
Kharim, Y. E. Etude des mouvements de versants Dans La région de Tétouan (Rif occidental): inventaire analyse et cartographie. Abdelmaalek Essaadi, (2002).
Görüm, T. Tectonic, topographic and rock-type influences on large landslides at the Northern margin of the Anatolian plateau. Landslides 16 (2), 333–346 (2019).
El Kadiri, K. et al. Eustatic and tectonic controls on quaternary Ras Leona marine terraces (Strait of Gibraltar, Northern Morocco). Quat Res. 74 (2), 277–288 (2010).
Lomoschitz, A., Meco, J. & Corominas, J. The Barranco de Tirajana basin, Gran Canaria (Spain). A major erosive landform caused by large landslides. Geomorphology 42 (1–2), 117–130 (2002).
Author information
Authors and Affiliations
Contributions
Ali Bounab: Writing – review & editing, Writing – original draft, Software, Methodology, Data curation, Conceptualization.Reda Sahrane : Writing – original draft, Software, Methodology, Data curation, Conceptualization.Younes El Kharim: Writing – original draft, Software, Methodology, Data curation, ConceptualizationOussama Obda : Software, Data curation, ConceptualizationMohamed Mastere: Writing – review & editing, Validation, SupervisionIlias Obda: Software, Data curation, Conceptualization.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Bounab, A., Sahrane, R., El Kharim, Y. et al. The influence of study area selection and landslide inventory practices on landslides spatial distribution: an example from Northern Morocco. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36587-y
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-36587-y


