Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
The influence of study area selection and landslide inventory practices on landslides spatial distribution: an example from Northern Morocco
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 17 January 2026

The influence of study area selection and landslide inventory practices on landslides spatial distribution: an example from Northern Morocco

  • Ali Bounab1,2,
  • Reda Sahrane2,
  • Younes El Kharim3,
  • Oussama Obda3,
  • Mohamed Mastere4,5 &
  • …
  • Ilias Obda6 

Scientific Reports , Article number:  (2026) Cite this article

  • 865 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Environmental sciences
  • Environmental social sciences
  • Hydrology
  • Natural hazards
  • Planetary science
  • Solid Earth sciences

Abstract

Numerous studies focused on the technical limitations of Landslides Susceptibility Maps (LSM). They were concerned with the impact of LSM technique selection, conditioning factor combinations, and/or Landslides Inventory Map (LIM) practices on LSM sensitivity. However, no previous papers focused on study area selection and its influence on the output. In fact, most authors subdivide their study area into administrative/political territories, which may be useful for decision makers but is not very informative from a pure scientific stand point. Therefore, 3 territories of Northern Morocco were investigated in this study: the first corresponds to the 1:50 000 Tetouan topographic map (cartographic), the second covers Martil watershed (geomorphological) and the third is Tetouan province (political). The latter study area is of capital importance given its two contrasted geological and morphotectonic domains (Internal and External Rif), which may produce errors in the output. The input LIM datasets for the purpose of this study are: new-active LIM, Inactive-young LIM, Relict LIM, and all landslides LIM. We used two conventional LSM algorithms (Logistic Regression and Artificial Neural Networks) in order to avoid technique-specific biases. Our results show that study area selection is not as important as LIM with regard to the output LSMs, but remains very relevant in determining LSM distribution and accuracy for Tetouan map and Martil watershed study areas. As for Tetouan province, the model is unchanged using the same LIM in the External Rif but changes significantly in the Internal Rif. Our LSM analyses also revealed the link between landslides age and elevation in the External Rif domain where relict processes are mostly concentrated in mid-slopes while new-active ones occur in lower slopes. This is not observed in the Internal Rif, which further exhibits the importance of study area selection based on naturally delimited geomorphological units rather than political or cartographic boundaries.

Similar content being viewed by others

Study on landslide susceptibility mapping based on rock–soil characteristic factors

Article Open access 29 July 2021

Influence of sampling design on landslide susceptibility modeling in lithologically heterogeneous areas

Article Open access 08 February 2022

AHP multi criteria analysis for landslide susceptibility mapping in the Tellian Atlas chain

Article Open access 16 July 2025

Data availability

The datasets used and/or analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Carrara, A. et al. Landslide morphometry and typology in two zones, Calabria, Italy. Bull Int. Assoc. Eng. Geol. L’Association Int. Géologie l’Ingénieur, 16, 1, 8–13, 1977.

  2. Nilsen, T. H. & Brabb, E. E. Slope-stability Studies in the San Francisco Bay Region (California, 1977).

  3. Newman, E. B., Paradis, A. R. & Brabb, E. E. Feasibility and Cost of Using a Computer To Prepare Landslide Susceptibility Maps of the San Francisco Bay region, California 1443 (US Department of the Interior, 1977).

  4. Wieczorek, G. F. Landslide susceptibility evaluation in the Santa Cruz range (San Mateo county, 1980).

  5. Sharpe, C. F. Landslides and related phenomena: a study of mass-movements of soil and rock. (No Title), (1938).

  6. Varnes, D. J. Landslide types and processes. Landslides Eng. Pract. 24, 20–47 (1958).

    Google Scholar 

  7. Varnes, D. Slope movement types and processes. Spec. Rep. 176, 11–33 (1978).

    Google Scholar 

  8. McCalpin, J. Preliminary age classification of landslides for inventory mapping, in Conference: proceedings of the 21st engineering geology and soils engineering symposium, 99–111. (1984).

  9. Keefer, D. K. A model for earthflow., Géol. Soc. Amer., Abstr. Programs; U.S.A., 9, 7, 045–1046, 1977.

  10. Keefer, D. K. Landslides caused by earthquakes | GSA bulletin | geoscienceworld. GSA Bull. 95 (4), 406–421 (1984).

    Google Scholar 

  11. Baum, R. L., Reid, M. E., Wilburn, C. A. & Torikai, J. D. Summary of Geotechnical and Hydrologic Data Collected from May 1, 1990 Through April 30, 1991, for the Alani-Paty landslide, Manoa Valley, Honolulu, Hawaii ( Dept. of the Interior, US Geological Survey, 1991).

  12. Savage, W. Z. & Smith, W. K. A model for the plastic flow of landslides. US Geol. Surv. Prof. Pap, 1385, (1986).

  13. Carlini, M. et al. Tectonic control on the development and distribution of large landslides in the Northern apennines (Italy). Geomorphology 253, 425–437 (2016).

    Google Scholar 

  14. Bounab, A., El Kharim, Y., Hamdouni, R. E. & Hlila, R. A multidisciplinary approach to study slope instability in the Alboran sea shoreline: study of the Tamegaret deep-seated slow-moving landslide in Northern Morocco. J. Afr. Earth Sci. 184, 104345 (2021).

    Google Scholar 

  15. Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M. & Guzzetti, F. A review of statistically-based landslide susceptibility models. Earth Sci. Rev. 180, 60–91 (2018).

    Google Scholar 

  16. Haque, U. et al. The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci. Total Environ. 682, 673–684 (2019).

    Google Scholar 

  17. Haque, U. et al. Fatal landslides in Europe. Landslides 13 (6), 1545–1554 (2016).

    Google Scholar 

  18. Guzzetti, F. Landslide fatalities and the evaluation of landslide risk in Italy. Eng. Geol. 58 (2), 89–107 (2000).

    Google Scholar 

  19. Froude, M. J. & Petley, D. N. Global fatal landslide occurrence from 2004 to 2016. Nat. Hazards Earth Syst. Sci. 18 (8), 2161–2181 (2018).

    Google Scholar 

  20. Mastere, M. Mass Movement Hazard Assessment at a Medium Scale Using the Weight of Evidence Model and Neo-Predictive Variables Creation. In Mapping and Spatial Analysis of Socio-Economic and Environmental Indicators for Sustainable Development; Rebai, N., Mastere, M., Eds.; Advances in Science, Technology, and Innovation; Springer: Cham, Switzerland, 2020. (2020). https://doi.org/10.1007/978-3-030-21166-0_7

  21. Bonham-Carter, G. F. Weights of evidence modeling: a new approach to mapping mineral potential. Stat Appl. Earth Sci,171–183, (1989).

  22. Brabb, E. E., Pampeyan, E. H. & Bonilla, M. G. Landslide Susceptibility in San Mateo County (California, US Geological Survey, 1972).

  23. Lee, S. Current and future status of GIS-based landslide susceptibility mapping: a literature review. Korean J. Remote Sens. 35 (1), 179–193 (2019).

    Google Scholar 

  24. Pereira, S., Zêzere, J. L. & Bateira, C. Technical note: assessing predictive capacity and conditional independence of landslide predisposing factors for shallow landslide susceptibility models. Nat. Hazards Earth Syst. Sci. 12 (4), 979–988 (2012).

    Google Scholar 

  25. Chang, K. T., Merghadi, A., Yunus, A. P., Pham, B. T. & Dou, J. Evaluating scale effects of topographic variables in landslide susceptibility models using GIS-based machine learning techniques, Sci. Rep., 9, 1, 1–21, (2019).

  26. Kalantar, B., Pradhan, B., Naghibi, S. A., Motevalli, A. & Mansor, S. Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN). Geomatics Nat. Hazards Risk. 9 (1), 49–69 (2018).

    Google Scholar 

  27. Bounab, A., Agharroud, K., El Kharim, Y., Hamdouni, R. E. & Faghloumi, L. The importance of investigating causative factors and training data selection for accurate landslide susceptibility assessment: the case of Ain Lahcen commune (Tetouan, Northern Morocco. Geocarto Int. 37 (25), 9967–9997 (2022).

    Google Scholar 

  28. Sahrane, R., Bounab, A. & Kharim, Y. E. L. Investigating the effects of landslides inventory completeness on susceptibility mapping and frequency-area distributions: case of taounate province, Northern Morocco. Catena 220, 106737 (2023).

    Google Scholar 

  29. de Oliveira, G. G., Ruiz, L. F. C., Guasselli, L. A. & Haetinger, C. Random forest and artificial neural networks in landslide susceptibility modeling: a case study of the Fão river Basin, Southern Brazil. Nat. Hazards. 99 (2), 1049–1073 (2019).

    Google Scholar 

  30. Aditian, A., Kubota, T. & Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 318, 101–111 (2018).

    Google Scholar 

  31. Kavzoglu, T., Sahin, E. K. & Colkesen, I. Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides 11 (3), 425–439 (2014).

    Google Scholar 

  32. Lee, S. & Pradhan, B. Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides 4 (1), 33–41 (2007).

    Google Scholar 

  33. Boukhres, N. et al. A comparative modeling of landslides susceptibility at a meso-scale using frequency ratio and analytic hierarchy process models in geographic information system: the case of African alpine mountains (Rif, Morocco). Model. Earth Syst. Environ. 9, 1949–1975 (2022).

    Google Scholar 

  34. Shahabi, H., Khezri, S., Bin Ahmad, B. & Hashim, M. Landslide susceptibility mapping at central Zab basin, iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 115, 55–70 (2014).

    Google Scholar 

  35. Obda, I. et al. Landslide susceptibility mapping using GIS matrix method and frequency Ratio, application in the Marly context of moulay Yacoub Region, Morocco. BSGF-Earth Sci. Bull. 195 (1), 1 (2024).

    Google Scholar 

  36. Li, D. et al. Landslide susceptibility prediction using particle-swarm-optimized multilayer perceptron: comparisons with multilayer-perceptron-only, Bp neural network, and information value models. Appl. Sci. 9 (18), 3664 (2019).

    Google Scholar 

  37. Benchelha, S. et al. Landslide susceptibility mapping in the commune of Oudka, taounate Province, North morocco: A comparative analysis of logistic regression, multivariate adaptive regression Spline, and artificial neural network models. Environ. Eng. Geosci. 26 (2), 185–200 (2020).

    Google Scholar 

  38. Sahrane, R., Kharim, Y. E. & Bounab, A. Investigating the effects of landscape characteristics on landslide susceptibility and Frequency-area distributions: the case of Taounate province, Northern Morocco., Geocarto Int., 0, 1–22, (2022).

  39. Trafimow, D. The Attenuation of correlation coefficients: A statistical literacy issue. Teach. Stat. 38 (1), 25–28 (2016).

    Google Scholar 

  40. Jakob, M. & Lambert, S. Climate change effects on landslides along the Southwest Coast of British Columbia. Geomorphology 107, 3–4 (2009).

    Google Scholar 

  41. Chiang, S. H. & Chang, K. T. The potential impact of climate change on typhoon-triggered landslides in Taiwan, 2010–2099, Geomorphology, 133, 3–4, 143–151, (2011).

  42. Didon, J., Durand-Delga, M. & Kornprobst, J. Homologies géologiques entre les Deux Rives du détroit de Gibraltar. Bull. la. Soc. géologique Fr. 7 (2), 77–105 (1973).

    Google Scholar 

  43. Durand-Delga, M. Données Actuelles Sur La Structure Du Rif (En vente à la Société géologique de France, 1961).

  44. Durand Delga, M. & Kornprobst, J. Esquisse géologique de La région de Ceuta (Maroc). Bull. la. Société Géologique Fr. 7 (7), 1049–1057 (1963).

    Google Scholar 

  45. Negro, F., Beyssac, O., Goffé, B., Saddiqi, O. & Bouybaouène, M. L. Thermal structure of the Alboran domain in the Rif (northern Morocco) and the Western betics (southern Spain). Constraints from Raman spectroscopy of carbonaceous material. J Metamorph Geol, 24, 4, (2006).

  46. Michard, A. et al. Pressure–temperature–time constraints on the maghrebide mountain building: evidence from the Rif–Betic transect (Morocco, Spain), Algerian correlations, and geodynamic implications. Comptes Rendus Geosci. 338, 1–2 (2006).

    Google Scholar 

  47. Mrihi, A. E. Structures alpines des zones externes et des nappes de flyschs à l’ouest de la chaîne du Haouz (Rif septentrional, maroc), Univ. Mohammed V Rabat, Morocco, (1995).

  48. El Talibi, H. et al. Sedimentary evolution of the siliciclastic Aptian–Albian Massylian flysch of the chouamat nappe (central Rif, Morocco). J. Afr. Earth Sci. 100, 554–568 (2014).

    Google Scholar 

  49. Bouillin, J. P. et al. Définition d’un flysch Massylien et d’un flysch maurétanien Au Sein des flyschs allochtones de l’Algérie. CR Acad. Sci. 270, 2249–2252 (1970).

    Google Scholar 

  50. Durand-Delga, M., Rossi, P., Olivier, P. & Puglisi, D. Situation structurale et nature ophiolitique de roches basiques jurassiques associées aux flyschs maghrébins du Rif (Maroc) et de Sicile (Italie), Comptes Rendus l’Académie des Sci. IIA-Earth Planet. Sci., 331, 1, 29–38, (2000).

  51. Romagny, A. Évolution des mouvements verticaux néogènes de La chaîne du Rif (nord-maroc): apports d’une analyse structurale et thermochronologique. Université Nice Sophia Antipolis, (2014).

  52. Gharbaoui, A. E. Note preliminaire Sur l’evolution geomorphologique de La peninsule de Tanger. Bull. la. Société Géologique Fr. S7-XIX (3), 615–622 (1977).

    Google Scholar 

  53. Bounab, A. Multi-source analysis for the study of landslides on both sides of the Northern dorsale calcaire: cartography and modelling. Abdelmaalek Essaadi, (2022).

  54. Kharim, Y. E. Etude des mouvements de versants Dans La région de Tétouan (Rif occidental): Inventaire, analyse et cartographie. Thèse Dr d’Etat ès Sci, 20p1, (2002).

  55. Sahrane, R. et al. Assessing the reliability of landslides susceptibility models with limited data: impact of Geomorphological diversity and technique selection on model performance in taounate Province, Northern Morocco. Earth Syst. Environ, 1–25, (2024).

  56. Obda, O., El Kharim, Y., Obda, I., Ahniche, M. & Sahrane, R. Landslide susceptibility assessment and factors’ selection using the GIS matrix method (GMM) in Chefchaouen Province (Northern Morocco), In: International Conference on Mediterranean Geosciences Union,197–199. (2021).

  57. Fonseca, A. Large deep-seated landslides in the Northern Rif mountains (Northern Morocco): inventory and analysis, 195, (2014).

  58. Amatya, P., Kirschbaum, D. & Stanley, T. Rainfall-induced landslide inventories for lower Mekong based on planet imagery and a semi-automatic mapping method. Geosci Data J, (2022).

  59. Marc, O. & Hovius, N. Amalgamation in landslide maps: effects and automatic detection. Nat. Hazards Earth Syst. Sci. 15 (4), 723–733 (2015).

    Google Scholar 

  60. Qi, W., Wei, M., Yang, W., Xu, C. & Ma, C. Automatic mapping of landslides by the ResU-Net. Remote Sens. 12 (15), 2487 (2020).

    Google Scholar 

  61. Martha, T. R., van Westen, C. J., Kerle, N., Jetten, V. & Kumar, K. V. Landslide hazard and risk assessment using semi-automatically created landslide inventories. Geomorphology 184, 139–150 (2013).

    Google Scholar 

  62. Boukhres, N. et al. Mass movement inventory map of the Dhar Souk region and its main Spatial morphometric characteristics. Bull. L’Institut Sci. Sect. Sci. Terre. 46, 15–39 (2024).

    Google Scholar 

  63. Cruden, D. M., ., D. & Varnes, J. Landslide types and processes, special report, transportation research board, national academy of sciences, United States Geol. Surv., 247, 36–75, 1996. (1996).

  64. Guzzetti, F., Malamud, B. D., Turcotte, D. L. & Reichenbach, P. Power-law correlations of landslide areas in central Italy. Earth Planet. Sci. Lett. 195, 3–4 (2002).

    Google Scholar 

  65. Van Den Eeckhaut, M., Poesen, J., Govers, G., Verstraeten, G. & Demoulin, A. Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet. Sci. Lett. 256, 3–4 (2007).

    Google Scholar 

  66. Sahrane, R. et al. Landslide–Anthropogenic interactions in urban areas: A multidisciplinary case study from Taounate, Morocco. Geotech. Geol. Eng. 43 (6), 238 (2025).

    Google Scholar 

  67. Stark, C. P. & Hovius, N. The characterization of landslide size distributions. Geophys. Res. Lett. 28 (6), 1091–1094 (2001).

    Google Scholar 

  68. Mastere, M., El Fellah, B. & Maquaire, O. Landslide inventory map as a first step for hazard and risk assessment: Rif Mountains, Morocco. Bull. L’Institut Sci. Sect. Sci. Terre. 42, 49–62 (2020).

    Google Scholar 

  69. Bounab, A., El Kharim, Y., El Kharrim, M., Kharrim, A. E. & Sahrane, R. The performance of landslides frequency-area distribution analyses using a newly developed fully automatic tool. Appl. Geomatics. 16 (3), 789–796 (2024).

    Google Scholar 

  70. Qiu, H. et al. Comparing landslide size probability distribution at the landscape scale (Loess plateau and the Qinba Mountains, central China) using double Pareto and inverse gamma. Bull. Eng. Geol. Environ. 80 (2), 1035–1046 (2021).

    Google Scholar 

  71. Tanyaş, H., van Westen, C. J., Allstadt, K. E. & Jibson, R. W. Factors controlling landslide frequency–area distributions. Earth Surf. Process. Land. 44 (4), 900–917 (2019).

    Google Scholar 

  72. O’brien, R. M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 41 (5), 673–690 (2007).

    Google Scholar 

  73. Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop). 36 (1), 27–46 (2013).

    Google Scholar 

  74. Chen, W. et al. Spatial prediction of landslide susceptibility using data mining-based kernel logistic regression, Naive Bayes and RBFNetwork models for the long County area (China). Bull. Eng. Geol. Environ. 78 (1), 247–266 (2019).

    Google Scholar 

  75. Wang, Y., Fang, Z. & Hong, H. Comparison of convolutional neural networks for landslide susceptibility mapping in Yanshan County, China. Sci. Total Environ. 666, 975–993 (2019).

    Google Scholar 

  76. Sar, N., Khan, A., Chatterjee, S., Das, A. & Mipun, B. S. Coupling of Analytical Hierarchy Process and Frequency Ratio Based Spatial Prediction of Soil Erosion Susceptibility in Keleghai River Basin (India. Elsevier, 2016).

  77. Kavzoglu, T., Kutlug Sahin, E. & Colkesen, I. An assessment of multivariate and bivariate approaches in landslide susceptibility mapping: a case study of Duzkoy district. Nat. Hazards. 76 (1), 471–496 (2015).

    Google Scholar 

  78. Othman, A. A. et al. Landslide susceptibility mapping in Mawat area, Kurdistan Region, NE iraq: a comparison of different statistical models. NHESD 3 (3), 1789–1833 (2015).

    Google Scholar 

  79. Pradhan, B. & Lee, S. Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environ. Model. Softw. 25 (6), 747–759 (2010).

    Google Scholar 

  80. Dou, J., Yamagishi, H., Zhu, Z., Yunus, A. P. & Chen, C. W. TXT-tool 1.081-6.1 A comparative study of the binary logistic regression (BLR) and artificial neural network (ANN) models for GIS-based Spatial predicting landslides at a regional scale, in Landslide Dynamics: ISDR-ICL Landslide Interactive Teaching Tools: 1: Fundamentals, Mapping and Monitoring, Springer, 139–151. (2017).

  81. Were, K., Bui, D. T., Dick, Ø. B. & Singh, B. R. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecol. Indic. 52, 394–403 (2015).

    Google Scholar 

  82. Svozil, D., Kvasnicka, V. & Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom Intell. Lab. Syst. 39 (1), 43–62 (1997).

    Google Scholar 

  83. Csáji, B. C. Approximation with artificial neural networks. Fac. Sci. Etvs Lornd Univ. Hung. 24 (48), 7 (2001).

    Google Scholar 

  84. Zeng-Wang, X. U. GIS and ANN model for landslide susceptibility mapping. J. Geogr. Sci. 11 (3), 374–381 (2001).

    Google Scholar 

  85. Budimir, M. E. A., Atkinson, P. M. & Lewis, H. G. A systematic review of landslide probability mapping using logistic regression. Landslides 12 (3), 419–436 (2015).

    Google Scholar 

  86. Othman, A. A., Gloaguen, R., Andreani, L. & Rahnama, M. Improving landslide susceptibility mapping using morphometric features in the Mawat area, Kurdistan Region, NE iraq: comparison of different statistical models. Geomorphology 319, 147–160 (2018).

    Google Scholar 

  87. Anderson, D. E., Goudie, A. & Parker, A. Global Environments Through the Quaternary: Exploring Evironmental Change (Oxford University Press, 2013).

  88. Livingstone, D. A. Late quaternary Climatic change in Africa. Annu Rev. Ecol. Syst, 249–280, (1975).

  89. Borrelli, L., Ciurleo, M. & Gullà, G. Shallow landslide susceptibility assessment in granitic rocks using GIS-based statistical methods: the contribution of the weathering grade map. Landslides 15 (6), 1127–1142 (2018).

    Google Scholar 

  90. Zuva, K. Evaluation of information retrieval systems. Int. J. Comput. Sci. Inf. Technol. 4 (3), 35–43 (2012).

    Google Scholar 

  91. Swets, J. Measuring the accuracy of diagnostic systems, 1285–1293. (1988).

  92. Yesilnacar, E. & Topal, T. Landslide susceptibility mapping: a comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Eng. Geol. 79, 3–4 (2005).

    Google Scholar 

  93. Naghibi, S. A., Pourghasemi, H. R. & Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran, Environ. Monit. Assess. 188, 1, 1–27, 2015. (2015).

  94. Bennett, G. L., Molnar, P., Eisenbeiss, H. & Mcardell, B. W. Erosional power in the Swiss alps: characterization of slope failure in the illgraben. Earth Surf. Process. Land. 37 (15), 1627–1640 (2012).

    Google Scholar 

  95. Dussauge-Peisser, C. et al. Probabilistic approach to rock fall hazard assessment: potential of historical data analysis. Nat. Hazards Earth Syst. Sci. 2 (1/2), 15–26 (2002).

    Google Scholar 

  96. Densmore, A. L., Ellis, M. A. & Anderson, R. S. Landsliding and the evolution of normal-fault-bounded mountains. J. Geophys. Res. Solid Earth. 103 (B7), 15203–15219 (1998).

    Google Scholar 

  97. Sugai, T., Ohmori, H. & Hirano, M. Rock control on magnitude-frequency distribution of landslide. Int. J. Rock. Mech. Min. Sci. Geomech. Abstracts. 3 (32), 116A (1995).

    Google Scholar 

  98. Galli, M., Ardizzone, F., Cardinali, M., Guzzetti, F. & Reichenbach, P. Comparing landslide inventory maps. Geomorphology 94, 3–4 (2008).

    Google Scholar 

  99. Segoni, S., Pappafico, G., Luti, T. & Catani, F. Landslide susceptibility assessment in complex geological settings: sensitivity to geological information and insights on its parameterization. Landslides 17 (10), 2443–2453 (2020).

    Google Scholar 

  100. Breiman, L. Statistical modeling: the two cultures. Qual. Control Appl. Stat. 48 (1), 81–82 (2003).

    Google Scholar 

  101. Platt, J. P. & Vissers, R. L. M. Extensional collapse of thickened continental lithosphere: A working hypothesis for the Alboran sea and Gibraltar Arc. Geology 17 (6), 540–543 (1989).

    Google Scholar 

  102. Gharbaoui, A. E. Note préliminaire Sur l’évolution géomorphologique de La péninsule de Tanger. Bull. la. Société Géologique Fr. 7 (3), 615–622 (1977).

    Google Scholar 

  103. Gharbaoui, A. E. La Terre Et L’homme Dans La péninsule Tingitane: étude Sur L’homme Et Le Milieu Naturel Dans Le Rif Occidental 15 (Institut scientifique Rabat, 1981).

  104. Rognon, P. Late quaternary Climatic reconstruction for the Maghreb (North Africa). Palaeogeogr Palaeoclimatol Palaeoecol. 58, 1–2 (1987).

    Google Scholar 

  105. Vesica, P. L. et al. Late pleistocene paleoclimates and sea-level change in the mediterranean as inferred from stable isotope and U-series studies of overgrowths on speleothems, Mallorca, Spain. Quat Sci. Rev. 19 (9), 865–879 (2000).

    Google Scholar 

  106. Millies-Lacroix, A. Les glissements de terrains. Présentation d’une Carte prévisionnelle des mouvements de masse Dans Le Rif (Maroc septentrional). Mines Et Géologie. 27, 45–55 (1968).

    Google Scholar 

  107. Trandafir, A. C., Ertugrul, O. L., Giraud, R. E. & McDonald, G. N. Geomechanics of a snowmelt-induced slope failure in glacial till. Environ. Earth Sci. 73 (7), 3709–3716 (2015).

    Google Scholar 

  108. Chiarelli, D. D., Galizzi, M., Bocchiola, D., Rosso, R. & Rulli, M. C. Modeling snowmelt influence on shallow landslides in Tartano valley, Italian alps. Sci. Total Environ. 856, 158772 (2023).

    Google Scholar 

  109. Milliés-Lacroix, A. Les glissements de terrain, présentation d’une Carte prévisionnelle des mouvements de masses Dans Le Rif (Maroc septentrional). Mines Et Géologie. 27, 45–54 (1965).

    Google Scholar 

  110. Kharim, Y. E. Etude des mouvements de versants Dans La région de Tétouan (Rif occidental): inventaire analyse et cartographie. Abdelmaalek Essaadi, (2002).

  111. Görüm, T. Tectonic, topographic and rock-type influences on large landslides at the Northern margin of the Anatolian plateau. Landslides 16 (2), 333–346 (2019).

    Google Scholar 

  112. El Kadiri, K. et al. Eustatic and tectonic controls on quaternary Ras Leona marine terraces (Strait of Gibraltar, Northern Morocco). Quat Res. 74 (2), 277–288 (2010).

    Google Scholar 

  113. Lomoschitz, A., Meco, J. & Corominas, J. The Barranco de Tirajana basin, Gran Canaria (Spain). A major erosive landform caused by large landslides. Geomorphology 42 (1–2), 117–130 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Superior School of Technology, Sultan Moulay Slimane University, Fkih Ben Salah, Morocco

    Ali Bounab

  2. Data4Earth Lab, FST, Sultan Moulay Slimane University, Campus Mghila, P.B. 523, Béni-Mellal, Morocco

    Ali Bounab & Reda Sahrane

  3. GERN, Faculté des Sciences, Abdelmalek Essaadi University, Tetouan, 93000, Morocco

    Younes El Kharim & Oussama Obda

  4. Scientific Institute, Mohammed V University in Rabat, Avenue Ibn Battouta, PoBOX: 703, Rabat, 10000, Morocco

    Mohamed Mastere

  5. School of Public Management, Governance and Public Policy, College of Business & Economics, University of Johannesburg, Auckland Park Kingsway Campus, Johannesburg, 2092, South Africa

    Mohamed Mastere

  6. École Supérieure De L’Education et de la Formation Oujda, Oujda, Morocco

    Ilias Obda

Authors
  1. Ali Bounab
    View author publications

    Search author on:PubMed Google Scholar

  2. Reda Sahrane
    View author publications

    Search author on:PubMed Google Scholar

  3. Younes El Kharim
    View author publications

    Search author on:PubMed Google Scholar

  4. Oussama Obda
    View author publications

    Search author on:PubMed Google Scholar

  5. Mohamed Mastere
    View author publications

    Search author on:PubMed Google Scholar

  6. Ilias Obda
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Ali Bounab: Writing – review & editing, Writing – original draft, Software, Methodology, Data curation, Conceptualization.Reda Sahrane : Writing – original draft, Software, Methodology, Data curation, Conceptualization.Younes El Kharim: Writing – original draft, Software, Methodology, Data curation, ConceptualizationOussama Obda : Software, Data curation, ConceptualizationMohamed Mastere: Writing – review & editing, Validation, SupervisionIlias Obda: Software, Data curation, Conceptualization.

Corresponding author

Correspondence to Mohamed Mastere.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounab, A., Sahrane, R., El Kharim, Y. et al. The influence of study area selection and landslide inventory practices on landslides spatial distribution: an example from Northern Morocco. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36587-y

Download citation

  • Received: 18 June 2025

  • Accepted: 14 January 2026

  • Published: 17 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36587-y

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Landslides susceptibility
  • Size-frequency distribution
  • Geomorphology
  • Study area
  • Northern Morocco
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene