Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Delta gamma oscillatory interactions support visuomotor processing in the lateral frontal cortex of macaque monkeys
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

Delta gamma oscillatory interactions support visuomotor processing in the lateral frontal cortex of macaque monkeys

  • Sosuke Harigae1,
  • Hidenori Watanabe2,
  • Masashi Aoki1 &
  • …
  • Hajime Mushiake3 

Scientific Reports , Article number:  (2026) Cite this article

  • 879 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Attention
  • Cognitive neuroscience
  • Motor control
  • Neuroscience
  • Premotor cortex
  • Visual system
  • Working memory

Abstract

Visuomotor processing, the cognitive process by which visual information motivates motor action, is a fundamental process of mammalian brain function involving areas in the lateral frontal cortex. Specifically, in the frontal eye field (FEF) and premotor cortex (PM), frequency-dependent modulation of neural oscillations has been observed in association with visual perception and motor planning, respectively. However, whether the combination of neural signals in different frequency bands is related to information processing remains unclear. Here, we show phase coherence of delta band oscillations and phase amplitude coupling of delta and gamma band oscillations in electrocorticogram (ECoG) signals from FEF and PM, in monkeys during visuomotor tasks. Event-related phase signal in the delta frequency band and the coupling signal between the delta and gamma frequency bands were observed in respond to visual instruction and around movement onset. The spatial patterns of phase coherence and phase‒amplitude coupling could discriminate the task conditions. The phase of the delta oscillations and amplitude of the gamma oscillations may play roles in visuomotor processing in the FEF and PM.

Similar content being viewed by others

Discriminating orientation information with phase consistency in alpha and low-gamma frequency bands: an EEG study

Article Open access 25 May 2024

Prefrontal cortex contribution in transitive inference task through the interplay of beta and gamma oscillations

Article Open access 31 December 2024

Conditioned up and down modulations of short latency gamma band oscillations in visual cortex during fear learning in humans

Article Open access 16 February 2022

Data availability

The raw data were recorded at Tohoku University. The derived data supporting the findings of this study are available from the corresponding author H. W. upon request.

Abbreviations

ECoG:

Electrocorticogram

LFP:

Local field potential

EEG:

Electroencephalogram

CS:

Central sulcus

AS:

Arcuate sulcus

PM:

Premotor cortex

M1:

Primary motor cortex

FEF:

Frontal eye field

PMd:

Dorsal premotor cortex

PMv:

Ventral premotor cortex

S1:

Primary sensory cortex

SD:

Standard distribution

SEM:

Standard error mean

ITPC:

Intertrial phase coherence

ERSP:

Event-related spectral perturbation

PAC:

Phase amplitude coupling

ANOVA:

Analysis of variance

ERP:

Event-related potential

MEG:

Magnetoencephalography

iEEG:

Intracranial EEG

References

  1. Kastner, S. & Ungerleider, L. G. Mechanisms of visual attention in the human cortex. Annu. Rev. Neurosci. 23(1), 315–341 (2000).

    Google Scholar 

  2. Thompson, K. G., Biscoe, K. L. & Sato, T. R. Neuronal basis of covert spatial attention in the frontal eye field. J. Neurosci. 25(41), 9479–9487 (2005).

    Google Scholar 

  3. Fogassi, L. et al. Space coding by premotor cortex. Exp. Brain Res. 89, 686–690 (1992).

    Google Scholar 

  4. Pesaran, B., Nelson, M. J. & Andersen, R. A. Dorsal premotor neurons encode the relative position of the hand, eye, and goal during reach planning. Neuron 51(1), 125–134 (2006).

    Google Scholar 

  5. Hoshi, E. & Tanji, J. Distinctions between dorsal and ventral premotor areas: anatomical connectivity and functional properties. Curr. Opin. Neurobiol. 17(2), 234–242 (2007).

    Google Scholar 

  6. Hosaka, R., Watanabe, H., Nakajima, T. & Mushiake, H. Theta dynamics contribute to retrieving motor plans after interruptions in the primate premotor area. Cereb. Cortex Commun. 2(4), tgab059 (2021).

    Google Scholar 

  7. Wang, W. et al. Human motor cortical activity recorded with Micro-ECoG electrodes, during individual finger movements. In 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society 586–589 (IEEE, 2009).

    Google Scholar 

  8. Jiang, T. et al. Characterization and decoding the spatial patterns of hand extension/flexion using high-density ECoG. IEEE Trans. Neural Syst. Rehabil. Eng. 25(4), 370–379 (2017).

    Google Scholar 

  9. Nakanishi, Y. et al. Mapping ECoG channel contributions to trajectory and muscle activity prediction in human sensorimotor cortex. Sci. Rep. 7(1), 45486 (2017).

    Google Scholar 

  10. Gunduz, A. et al. Neural correlates of visual–spatial attention in electrocorticographic signals in humans. Front. Hum. Neurosci. 5, 89 (2011).

    Google Scholar 

  11. Hammer, J. et al. Predominance of movement speed over direction in neuronal population signals of motor cortex: intracranial EEG data and a simple explanatory model. Cereb. Cortex 26(6), 2863–2881 (2016).

    Google Scholar 

  12. Mizuhara, H. & Yamaguchi, Y. Human cortical circuits for central executive function emerge by theta phase synchronization. Neuroimage 36(1), 232–244 (2007).

    Google Scholar 

  13. Kajihara, T. et al. Neural dynamics in motor preparation: From phase-mediated global computation to amplitude-mediated local computation. Neuroimage 118, 445–455 (2015).

    Google Scholar 

  14. Popovych, S. et al. Movement-related phase locking in the delta–theta frequency band. Neuroimage 139, 439–449 (2016).

    Google Scholar 

  15. Suda, Y. et al. Prediction-related frontal-temporal network for omission mismatch activity in the macaque monkey. Front. Psych. 13, 557954 (2022).

    Google Scholar 

  16. Canolty, R. T. & Knight, R. T. The functional role of cross-frequency coupling. Trends Cogn. Sci. 14(11), 506–515 (2010).

    Google Scholar 

  17. Canolty, R. T. et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793), 1626–1628 (2006).

    Google Scholar 

  18. Jeannerod, M., Arbib, M. A., Rizzolatti, G. & Sakata, H. Grasping objects: the cortical mechanisms of visuomotor transformation. Trends Neurosci. 18(7), 314–320 (1995).

    Google Scholar 

  19. Kalaska, J. F., Scott, S. H., Cisek, P. & Sergio, L. E. Cortical control of reaching movements. Curr. Opin. Neurobiol. 7(6), 849–859 (1997).

    Google Scholar 

  20. Georgopoulos, A. P., Kalaska, J. F., Caminiti, R. & Massey, J. T. On the relations between the direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci. 2(11), 1527–1537 (1982).

    Google Scholar 

  21. Caminiti, R., Johnson, P. B. & Urbano, A. Making arm movements within different parts of space: dynamic aspects in the primate motor cortex. J. Neurosci. 10(7), 2039–2058 (1990).

    Google Scholar 

  22. Kakei, S., Hoffman, D. S. & Strick, P. L. Muscle and movement representations in the primary motor cortex. Science 285(5436), 2136–2139 (1999).

    Google Scholar 

  23. Hatsopoulos, N. G. & Suminski, A. J. Sensing with the Motor Cortex. Neuron 72(3), 477–487 (2011).

    Google Scholar 

  24. Caminiti, R. et al. Making arm movements within different parts of space: the premotor and motor cortical representation of a coordinate system for reaching to visual targets. J. Neurosci. 11(5), 1182–1197 (1991).

    Google Scholar 

  25. Kurata, K. Premotor cortex of monkeys: set- and movement-related activity reflecting amplitude and direction of wrist movements. J. Neurophysiol. 69(1), 187–200 (1993).

    Google Scholar 

  26. Kubota, K. & Hamada, I. Visual tracking and neuron activity in the post-arcuate area in monkeys. J. Physiol. 74(3), 297–312 (1978).

    Google Scholar 

  27. Kakei, S., Hoffman, D. S. & Strick, P. L. Direction of action is represented in the ventral premotor cortex. Nat. Neurosci. 4(10), 1020–1025 (2001).

    Google Scholar 

  28. Hoshi, E. & Tanji, J. Differential involvement of neurons in the dorsal and ventral premotor cortex during processing of visual signals for action planning. J. Neurophysiol. 95(6), 3596–3616 (2006).

    Google Scholar 

  29. Mountcastle, V. B. et al. Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J. Neurophysiol. 38(4), 871–908 (1975).

    Google Scholar 

  30. Kalaska, J. F., Caminiti, R. & Georgopoulos, A. P. Cortical mechanisms related to the direction of two-dimensional arm movements: relations in parietal area 5 and comparison with motor cortex. Exp. Brain Res. 51, 247–260 (1983).

    Google Scholar 

  31. Andersen, R. A., Essick, G. K. & Siegel, R. M. Encoding of spatial location by posterior parietal neurons. Science 230(4724), 456–458 (1985).

    Google Scholar 

  32. Lacquaniti, F. et al. Representing spatial information for limb movement: role of area 5 in the monkey. Cereb. Cortex 5(5), 391–409 (1995).

    Google Scholar 

  33. Sakaguchi, Y., Ishida, F., Shimizu, T. & Murata, A. Time course of information representation of macaque AIP neurons in hand manipulation task revealed by information analysis. J. Neurophysiol. 104(6), 3625–3643 (2010).

    Google Scholar 

  34. Awan, M. A. H., Mushiake, H. & Matsuzaka, Y. Neuronal Representations of Tactic-Based Sensorimotor Transformations in the Primate Medial Prefrontal, Presupplementary, and Supplementary Motor Areas: A Comparative Study. Front. Syst. Neurosci. 14, 536246 (2020).

    Google Scholar 

  35. Hocherman, S. & Wise, S. P. Effects of hand movement path on motor cortical activity in awake, behaving rhesus monkeys. Exp. Brain Res. 83, 285–302 (1991).

    Google Scholar 

  36. Picard, N. & Strick, P. L. Activation of the supplementary motor area (SMA) during performance of visually guided movements. Cereb. Cortex 13(9), 977–986 (2003).

    Google Scholar 

  37. Fabbri, S., Caramazza, A. & Lingnau, A. Tuning curves for movement direction in the human visuomotor system. J. Neurosci. 30(40), 13488–13498 (2010).

    Google Scholar 

  38. Barany, D. A., Della-Maggiore, V., Viswanathan, S., Cieslak, M. & Grafton, S. T. Feature Interactions Enable Decoding of Sensorimotor Transformations for Goal-Directed Movement. J. Neurosci. 34(20), 6860–6873 (2014).

    Google Scholar 

  39. Isoda, M. & Tanji, J. Cellular activity in the supplementary eye field during sequential performance of multiple saccades. J. Neurophysiol. 88(6), 3541–3545 (2002).

    Google Scholar 

  40. Armstrong, K. M., Chang, M. H. & Moore, T. Selection and maintenance of spatial information by frontal eye field neurons. J. Neurosci. 29(50), 15621–15629 (2009).

    Google Scholar 

  41. Izawa, Y., Suzuki, H. & Shinoda, Y. Response properties of fixation neurons and their location in the frontal eye field in the monkey. J. Neurophysiol. 102(4), 2410–2422 (2009).

    Google Scholar 

  42. Schall, J. D. Visuomotor functions in the frontal lobe. Ann. Rev. Vis. Sci. 1(1), 469–498 (2015).

    Google Scholar 

  43. Sanes, J. N. & Donoghue, J. P. Oscillations in local field potentials of the primate motor cortex during voluntary movement. Proc. Natl. Acad. Sci. 90(10), 4470–4474 (1993).

    Google Scholar 

  44. Baker, S. N. Oscillatory interactions between sensorimotor cortex and the periphery. Curr. Opin. Neurobiol. 17(6), 649–655 (2007).

    Google Scholar 

  45. Fries, P. Rhythms for cognition: communication through coherence. Neuron 88(1), 220–235 (2015).

    Google Scholar 

  46. Watanabe, H., Takahashi, K., Nishimura, Y. & Isa, T. Phase and magnitude spatiotemporal dynamics of beta oscillation in electrocorticography (ECoG) in the monkey motor cortex at the onset of 3D reaching movements. In Annual International Conference of the IEEE Engineering in Medicine and Biology Society 5196–5199 (2014).

    Google Scholar 

  47. Denker, M. et al. LFP beta amplitude is linked to mesoscopic spatio-temporal phase patterns. Sci. Rep. 8(1), 5200 (2018).

    Google Scholar 

  48. Fortier, P. A., Kalaska, J. F. & Smith, A. M. Cerebellar neuronal activity related to whole-arm reaching movements in the monkey. J. Neurophysiol. 62(1), 198–211 (1989).

    Google Scholar 

  49. Mushiake, H. & Strick, P. L. Preferential activity of dentate neurons during limb movements guided by vision. J. Neurophysiol. 70(6), 2660–2664 (1993).

    Google Scholar 

  50. Kawato, M. Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9(6), 718–727 (1999).

    Google Scholar 

  51. Okada, K. I., Takeya, R. & Tanaka, M. Neural signals regulating motor synchronization in the primate deep cerebellar nuclei. Nature Commun. 13(1), 2504 (2022).

    Google Scholar 

  52. Watanabe, H. et al. Forelimb movements evoked by optogenetic stimulation of the macaque motor cortex. Nature commun. 11(1), 3253 (2020).

    Google Scholar 

  53. Nakamura, S. et al. Depression induced by low-frequency repetitive transcranial magnetic stimulation to ventral medial frontal cortex in monkeys. Exp. Neurol. 357, 114168 (2022).

    Google Scholar 

  54. Kelly, R. M. & Strick, P. L. Cerebellar Loops with Motor Cortex and Prefrontal Cortex of a Nonhuman Primate. J. Neurosci. 23(23), 8432–8444 (2003).

    Google Scholar 

  55. Watanabe, H. et al. Reconstruction of movement-related intracortical activity from micro-electrocorticogram array signals in monkey primary motor cortex. J. Neural Eng. 9(3), 036006 (2012).

    Google Scholar 

  56. Dubey, A. & Ray, S. Cortical electrocorticogram (ECoG) is a local signal. J. Neurosci. 39(22), 4299–4311 (2019).

    Google Scholar 

  57. Ray, S., Crone, N. E., Niebur, E., Franaszczuk, P. J. & Hsiao, S. S. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography. J. Neurosci. 28(45), 11526–11536 (2008).

    Google Scholar 

  58. De Araújo, D. B., Baffa, O. & Wakai, R. T. Theta oscillations and human navigation: a magnetoencephalography study. J. Cogn. Neurosci. 14(1), 70–78 (2002).

    Google Scholar 

  59. Raghavachari, S. et al. Gating of human theta oscillations by a working memory task. J. Neurosci. 21(9), 3175–3183 (2001).

    Google Scholar 

  60. Raghavachari, S. et al. Theta oscillations in human cortex during a working-memory task: evidence for local generators. J. Neurophysiol. 95(3), 1630–1638 (2006).

    Google Scholar 

  61. Kawasaki, M., Kitajo, K. & Yamaguchi, Y. Fronto-parietal and fronto-temporal theta phase synchronization for visual and auditory-verbal working memory. Front. Psychol. 5, 200 (2014).

    Google Scholar 

  62. Pennekamp, P., Bösel, R., Mecklinger, A. & Ott, H. Differences in EEG-theta for responded and omitted targets in a sustained attention task. J. Psychophysiol. 8(2), 131–141 (1994).

    Google Scholar 

  63. Deiber, M.-P. et al. Distinction between perceptual and attentional processing in working memory tasks: a study of phase-locked and induced oscillatory brain dynamics. J. Cogn. Neurosci. 19(1), 158–172 (2007).

    Google Scholar 

  64. Sauseng, P., Hoppe, J., Klimesch, W., Gerloff, C. & Hummel, F. C. Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur. J. Neurosci. 25(2), 587–593 (2007).

    Google Scholar 

  65. Tsukada, M., Ichinose, N., Aihara, K., Ito, H. & Fujii, H. Dynamical Cell Assembly Hypothesis - Theoretical Possibility of Spatio-temporal Coding in the Cortex. Neural Netw. 9(8), 1303–1350 (1996).

    Google Scholar 

  66. Sommer, M. A. & Wurtz, R. H. Composition and topographic organization of signals sent from the frontal eye field to the superior colliculus. J. Neurophysiol. 83(4), 1979–2001 (2000).

    Google Scholar 

  67. De Hemptinne, C. et al. Exaggerated phase–amplitude coupling in the primary motor cortex in Parkinson disease. Proc. Natl. Acad. Sci. 110(12), 4780–4785 (2013).

    Google Scholar 

  68. Nakajima, T., Arisawa, H., Hosaka, R. & Mushiake, H. Intended arm use influences interhemispheric correlation of β-oscillations in primate medial motor areas. J. Neurophysiol. 118(5), 2865–2883 (2017).

    Google Scholar 

  69. Kwon, M., Han, S., Kim, K. & Jun, S. C. Super-resolution for improving EEG spatial resolution using deep convolutional neural network—feasibility study. Sensors 19(23), 5317 (2019).

    Google Scholar 

  70. Brookes, M. J. et al. Magnetoencephalography with optically pumped magnetometers (OPM-MEG): the next generation of functional neuroimaging. Trends Neurosci. 45(8), 621–634 (2022).

    Google Scholar 

  71. Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004).

    Google Scholar 

  72. Martínez-Cancino, R. et al. Measuring transient phase-amplitude coupling using local mutual information. Neuroimage 185, 361–378 (2019).

    Google Scholar 

  73. Tort, A. B., Komorowski, R., Eichenbaum, H. & Kopell, N. Measuring phase-amplitude coupling between neuronal oscillations of different frequencies. J. Neurophysiol. 104(2), 1195–1210 (2010).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Society for the Promotion of Science KAKENHI (15K01854, 17KK0140, 22K07316 to HW; 16H0627, 19H03337, 23K18159 to HM); Ministry of Education, Culture, Sports, Science and Technology (15H05879 and 22H04922 to HM); Japan Agency for Medical Research and Development (JP19dm0207001 to HM); JST/MIRAI (JPMJMI19B4 to HM). Two monkeys used in the present study were provided through National Bio-Resource Project (NBRP) “Japanese Monkeys” of Japan Agency for Medical Research and Development (AMED). We thank M. Takahashi for technical assistance and animal care, Dr. K. Takahashi and R. Vetter for support of our design and surgery about the electrode arrays. We would like to thank Editage (www.editage.jp) and Springer Nature Author Services(authorservices.springernature.com) for English language editing.

Funding

Japan Society for the Promotion of Science, 15K01854, 16H0627, 17KK0140, 19H03337, 22K07316, 23K18159. Ministry of Education, Culture, Sports, Science and Technology, 15H05879, 22H04922. Japan Agency for Medical Research and Development, JP19dm0207001. JST-Mirai Program, JPMJMI19B4.

Author information

Authors and Affiliations

  1. Department of Neurology, Tohoku University Hospital, Sendai, Miyagi, 980-8574, Japan

    Sosuke Harigae & Masashi Aoki

  2. Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, 980-8577, Japan

    Hidenori Watanabe

  3. Department of System Neurosience, Tohoku University, Sendai, Miyagi, 980-8575, Japan

    Hajime Mushiake

Authors
  1. Sosuke Harigae
    View author publications

    Search author on:PubMed Google Scholar

  2. Hidenori Watanabe
    View author publications

    Search author on:PubMed Google Scholar

  3. Masashi Aoki
    View author publications

    Search author on:PubMed Google Scholar

  4. Hajime Mushiake
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceived and designed the experiments: HW, HM. Performed the experiments: HW. Analyzed the data: SH, HW. Wrote the paper: SH, HW, MA, and HM.

Corresponding author

Correspondence to Hidenori Watanabe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Approval for animal experiments

The Institutional Laboratory Animal Care and Use Committee of Tohoku University and the President of University (Approval No. 2015MdA-304, 2018MdA-255).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harigae, S., Watanabe, H., Aoki, M. et al. Delta gamma oscillatory interactions support visuomotor processing in the lateral frontal cortex of macaque monkeys. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36628-6

Download citation

  • Received: 16 September 2024

  • Accepted: 14 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36628-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • μ electrocorticogram
  • Frontal eye field
  • Premotor cortex
  • Intertrial phase coherence
  • Phase‒amplitude coupling
  • Visual perception
  • Motor planning
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing