Abstract
Mitochondrial function is essential for key neurodevelopmental processes, including cellular proliferation, differentiation, migration, synaptogenesis, and synaptic pruning. Previous research from our group demonstrated that neonatal administration of Rotenone (Rot), a mitochondrial complex I inhibitor, led to mitochondrial dysfunction and schizophrenia-like behavioral phenotypes. In this study, we aimed to identify possible cellular pathways disrupted by Rot exposure that may underlie these behavioral alterations. Thus, primary cortical neurons were treated with 1.325 nM Rot for 24 h, a concentration extrapolated from cortical levels observed in the neonatal Rot model. This treatment impaired mitochondrial complex I activity, decreased superoxide production, disrupted mitochondrial respiration and dynamics, reduced dendritic branching, and decreased synapse formation. Notably, pretreatment with Nicotinamide (NAM), a NAD precursor, improved mitochondrial function, reversing these effects. Altogether, our findings underscore the critical role of mitochondrial integrity in neurodevelopment and its potential contribution to neurodevelopmental disorders such as schizophrenia.
Data availability
The datasets utilized or analyzed in this study can be obtained from the corresponding author upon request.
References
Silbereis, J. C., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248–268. https://doi.org/10.1016/j.neuron.2015.12.008 (2016).
Morris-Rosendahl, D. J. & Crocq, A. Neurodevelopmental disorders—the history and future of a diagnostic concept. Dialogues Clin. Neurosci. 22, 65–72. https://doi.org/10.31887/DCNS.2020.22.1.macrocq (2020).
Anitha, A., Thanseem, I., Iype, M. & Thomas, S. V. Mitochondrial dysfunction in cognitive neurodevelopmental disorders: cause or effect? Mitochondrion 69, 18–32. https://doi.org/10.1016/j.mito.2023.01.002 (2023).
Bülow, P., Patgiri, A. & Faundez, V. Mitochondrial protein synthesis and the bioenergetic cost of neurodevelopment. iScience 25, 104920. https://doi.org/10.1016/j.isci.2022.104920 (2022).
Garone, C., De Giorgio, F. & Carli, S. Mitochondrial metabolism in neural stem cells and implications for neurodevelopmental and neurodegenerative diseases. J. Transl Med. 22, 238. https://doi.org/10.1186/s12967-024-05041-w (2024).
Silva, L. F. S. E. et al. Sirtuins modulators counteract mitochondrial dysfunction in cellular models of hypoxia: relevance to schizophrenia. Neuroscience 524, 269–284. https://doi.org/10.1016/j.neuroscience.2023.04.027 (2023).
Liu, C. et al. Crosstalk between Ca2 + signaling and mitochondrial H2O2 is required for rotenone Inhibition of mTOR signaling pathway leading to neuronal apoptosis. Oncotarget 7, 7534–7549. https://doi.org/10.18632/oncotarget.7183 (2016).
Fame, R. M. & Lehtinen, M. K. Mitochondria in early forebrain development: from neurulation to mid-corticogenesis. Front. Cell. Dev. Biol. 9, 780207. https://doi.org/10.3389/fcell.2021.780207 (2021).
Ene, H. M., Karry, R., Farfara, D. & Ben-Shachar, D. Mitochondria play an essential role in the trajectory of adolescent neurodevelopment and behavior in adulthood: evidence from a schizophrenia rat model. Mol. Psychiatry. 28, 1170–1181. https://doi.org/10.1038/s41380-022-01865-4 (2023).
Silva, C. A. et al. Activity-dependent regulation of mitochondrial motility in developing cortical dendrites. eLife 10, e62091. https://doi.org/10.7554/eLife.62091 (2021).
Ahmad, T. et al. Computational classification of mitochondrial shapes reflects stress and redox state. Cell Death Dis.4, e461 https://doi.org/10.1038/cddis.2012.213 (2013).
Khacho, M. & Slack, R. S. Mitochondrial dynamics in the regulation of neurogenesis: from development to the adult brain. Dev. Dyn. 247, 47–53. https://doi.org/10.1002/dvdy.24538 (2018).
Lu, D. et al. Mitochondrial transport in neurons and evidence for its involvement in acute neurological disorders. Front. Neurosci. 17, 1268883. https://doi.org/10.3389/fnins.2023.1268883 (2023).
Faits, M. C., Zhang, C., Soto, F. & Kerschensteiner, D. Dendritic mitochondria reach stable positions during circuit development. eLife 5, e11583 https://doi.org/10.7554/eLife.11583 (2016).
D’Apolito, E., Sisalli, M. J., Tufano, M., Annunziato, L. & Scorziello, A. Oxidative metabolism in brain ischemia and preconditioning: two sides of the same coin. Antioxidants 13, 547. https://doi.org/10.3390/antiox13050547 (2024).
Dean, B., Thomas, N., Scarr, E. & Udawela, M. Evidence for impaired glucose metabolism in the striatum, obtained postmortem, from some subjects with schizophrenia. Transl. Psychiatry. 6, e949. https://doi.org/10.1038/tp.2016.226 (2016).
Kim, J. H. et al. Altered interregional correlations between serotonin transporter availability and cerebral glucose metabolism in schizophrenia: a high-resolution PET study using [11 C]DASB and [18F]FDG. Schizophr Res. 182, 55–65. https://doi.org/10.1016/j.schres.2016.10.020 (2017).
Rowland, L. M. et al. Elevated brain lactate in schizophrenia: a 7T magnetic resonance spectroscopy study. Transl. Psychiatry. 6, e967. https://doi.org/10.1038/tp.2016.239 (2016).
Zuccoli, G. S., Saia-Cereda, V. M., Nascimento, J. M. & Martins-de-Souza, D. The energy metabolism dysfunction in psychiatric disorders postmortem brains: focus on proteomic evidence. Front. Neurosci. 11, 493. https://doi.org/10.3389/fnins.2017.00493 (2017).
Townsend, L. et al. Brain glucose metabolism in schizophrenia: a systematic review and meta-analysis of 18FDG-PET studies in schizophrenia. Psychol. Med. 53, 4880–4897. https://doi.org/10.1017/S003329172200174X (2023).
Ben-Shachar, D. & Karry, R. Neuroanatomical pattern of mitochondrial complex I pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One. 3, e3676. https://doi.org/10.1371/journal.pone.0003676 (2008).
Karry, R., Klein, E. & Ben-Shachar, D. Mitochondrial complex I subunits expression is altered in schizophrenia: a postmortem study. Biol. Psychiatry. 55, 676–684. https://doi.org/10.1016/j.biopsych.2003.12.012 (2004).
Holper, L., Ben-Shachar, D. & Mann, J. J. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, alzheimer disease, and Parkinson disease. Neuropsychopharmacology 44, 837–849. https://doi.org/10.1038/s41386-018-0090-0 (2019).
Roberts, R. C. Mitochondrial dysfunction in schizophrenia: with a focus on postmortem studies. Mitochondrion 56, 91–101. https://doi.org/10.1016/j.mito.2020.11.009 (2021).
Ben-Shachar, D. Mitochondrial multifaceted dysfunction in schizophrenia; complex I as a possible pathological target. Schizophr Res. 187, 3–10. https://doi.org/10.1016/j.schres.2016.10.022 (2017).
Siena, A. et al. Neonatal rotenone administration induces psychiatric disorder-like behavior and changes in mitochondrial biogenesis and synaptic proteins in adulthood. Mol. Neurobiol. 58, 3015–3030. https://doi.org/10.1007/s12035-021-02317-w (2021).
Varga, T. G. et al. Haloperidol rescues the schizophrenia-like phenotype in adulthood after rotenone administration in neonatal rats. Psychopharmacology 238, 2569–2585. https://doi.org/10.1007/s00213-021-05880-1 (2021).
Kocak, G. et al. Autophagy–NAD⁺ axis: emerging insights into neuronal homeostasis and neurodegenerative diseases. Front. Mol. Biosci. 12, 1695486. https://doi.org/10.3389/fmolb.2025.1695486 (2025).
Dölle, C. & Tzoulis, C. NAD augmentation as a disease-modifying strategy for neurodegeneration. Trends. Endocrinol. Metab. https://doi.org/10.1016/j.tem.2025.03.013 (2025).
Chen, M. et al. SLC29A1 and SLC29A2 are human nicotinamide cell membrane transporters. Nat. Commun. 16, 1181. https://doi.org/10.1038/s41467-025-56402-y (2025).
Ramos, A. C., de Mattos Hungria, F., Camerini, B. A., Suiama, M. A. & Calzavara, M. B. Potential beneficial effects of caffeine administration in the neonatal period of an animal model of schizophrenia. Behav. Brain Res. 391, 112674. https://doi.org/10.1016/j.bbr.2020.112674 (2020).
Silva, L. F. S., Siena, A., Yuzawa, J. M. C. & Rosenstock, T. R. Sirtuins modulators mitigate hypoxia-induced cell death due to changes in histone 3 acetylation and mitochondrial function, dynamics, and content. Neuropharmacology 275, 110484. https://doi.org/10.1016/j.neuropharm.2025.110484 (2025).
Sun, C. et al. NAD depletion mediates cytotoxicity in human neurons with autophagy deficiency. Cell. Rep. 42, 112372. https://doi.org/10.1016/j.celrep.2023.112372 (2023).
Rosenstock, T. R., Carvalho, A. C., Jurkiewicz, A., Frussa-Filho, R. & Smaili, S. S. Mitochondrial calcium, oxidative stress and apoptosis in a neurodegenerative disease model induced by 3-nitropropionic acid. J. Neurochem. 88, 1220–1228. https://doi.org/10.1046/j.1471-4159.2003.02250.x (2004).
Naia, L. & Rego, A. C. Isolation and maintenance of murine embryonic striatal neurons. Bio-protocol 8, e2823 https://doi.org/10.21769/BioProtoc.2823 (2018).
Naia, L. & Rego, A. C. Sirtuins: double players in huntington’s disease. Biochim. Biophys. Acta. 1852, 2183–2194. https://doi.org/10.1016/j.bbadis.2015.07.003 (2015).
Ribeiro, S. M., Giménez-Cassina, A. & Danial, N. N. Measurement of mitochondrial oxygen consumption rates in mouse primary neurons and astrocytes. Methods Mol. Biol. 1241, 59–69. https://doi.org/10.1007/978-1-4939-1875-1_6 (2015).
Silva, E., Brito, L. F. S., Yuzawa, M. D., Rosenstock, T. R. & J. M. C. & Mitochondrial dysfunction and changes in high-energy compounds in different cellular models associated to hypoxia: implication to schizophrenia. Sci. Rep. 9, 18049. https://doi.org/10.1038/s41598-019-53605-4 (2019).
Araujo, B. G. et al. Decreased mitochondrial function, biogenesis, and degradation in peripheral blood mononuclear cells from amyotrophic lateral sclerosis patients as a potential tool for biomarker research. Mol. Neurobiol. 57, 5084–5102. https://doi.org/10.1007/s12035-020-02059-1 (2020).
Orellana, A. M. M. et al. Effects of decrease in Klotho protein expression on insulin signaling and levels of proteins related to brain energy metabolism. Eur. J. Pharmacol. 997, 177587. https://doi.org/10.1016/j.ejphar.2025.177587 (2025).
Orellana, A. M. M. et al. Klotho increases antioxidant defenses in astrocytes and ubiquitin–proteasome activity in neurons. Sci. Rep. 13, 15080. https://doi.org/10.1038/s41598-023-41166-6 (2023).
Verstraelen, P. et al. Image-based profiling of synaptic connectivity in primary neuronal cell culture. Front. Neurosci. 12, 389. https://doi.org/10.3389/fnins.2018.00389 (2018).
Song, N., Mei, S., Wang, X., Hu, G. & Lu, M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl. Neurodegener. 13, 23. https://doi.org/10.1186/s40035-024-00429-6 (2024).
Wang, S. et al. The mitophagy pathway and its implications in human diseases. Signal. Transduct. Target. Ther. 8, 304. https://doi.org/10.1038/s41392-023-01503-7 (2023).
Bisbal, M., Remedi, M., Quassollo, G., Cáceres, A. & Sanchez, M. Rotenone inhibits axonogenesis via an Lfc/RhoA/ROCK pathway in cultured hippocampal neurons. J. Neurochem.. 146, 570–584. https://doi.org/10.1111/jnc.14657 (2018).
Okabe, S., Miwa, A. & Okado, H. Spine formation and correlated assembly of presynaptic and postsynaptic molecules. J. Neurosci. 21, 6105–6114. https://doi.org/10.1523/JNEUROSCI.21-16-06105.2001 (2001).
Pereira, C. S., Teixeira, M. H., Russell, D. A., Hirst, J. & Arantes, G. M. Mechanism of rotenone binding to respiratory complex I depends on ligand flexibility. Sci. Rep. 13, 6738. https://doi.org/10.1038/s41598-023-33828-8 (2023).
Giordano, S., Lee, J., Darley-Usmar, V. M. & Zhang, J. Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death. PLoS One. 7, e44610. https://doi.org/10.1371/journal.pone.0044610 (2012).
Moon, Y., Lee, K. H., Park, J. H., Geum, D. & Kim, K. Mitochondrial membrane depolarization and the selective death of dopaminergic neurons by rotenone: protective effect of coenzyme Q10. J. Neurochem.. 93, 1199–1208. https://doi.org/10.1111/j.1471-4159.2004.02929.x (2005).
Han, H. et al. Hyperoside reduces rotenone-induced neuronal injury by suppressing autophagy. Neurochem. Res. 46, 3149–3158. https://doi.org/10.1007/s11064-021-03446-8 (2021).
Liu, J. et al. Piperlongumine restores the balance of autophagy and apoptosis by increasing BCL2 phosphorylation in rotenone-induced Parkinson disease models. Autophagy 14, 845–861. https://doi.org/10.1080/15548627.2017.1385675 (2018).
Bollimpelli, V. S. & Kondapi, A. K. Differential sensitivity of immature and mature ventral mesencephalic neurons to rotenone-induced neurotoxicity in vitro. Toxicol. Vitro. 30, 545–551. https://doi.org/10.1016/j.tiv.2014.12.013 (2015).
Wang, X. J. & Xu, J. X. Possible involvement of Ca²⁺ signaling in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells. Neurosci. Lett. 376, 127–132. https://doi.org/10.1016/j.neulet.2004.11.041 (2005).
Swarnkar, S. et al. Rotenone-induced apoptosis and role of calcium: a study on Neuro-2a cells. Arch. Toxicol. 86, 1387–1397. https://doi.org/10.1007/s00204-012-0892-3 (2012).
Bastioli, G. et al. Selective Inhibition of mitochondrial sodium–calcium exchanger protects striatal neurons from α-synuclein plus rotenone-induced toxicity. Cell. Death Dis. 10, 80. https://doi.org/10.1038/s41419-018-1290-6 (2019).
Kvetkina, A. et al. Kunitz-type peptides from sea anemones protect neuronal cells against Parkinson’s disease inductors via inhibition of ROS production and ATP-induced P2X7 receptor activation. Int. J. Mol. Sci. 23, 5115. https://doi.org/10.3390/ijms23095115 (2022).
Cabezas, R. et al. PDGF-BB preserves mitochondrial morphology, attenuates ROS production, and upregulates neuroglobin in an astrocytic model under rotenone insult. Mol. Neurobiol. 55, 3085–3095. https://doi.org/10.1007/s12035-017-0567-6 (2018).
Rodriguez-Rocha, H. et al. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: distinct roles of superoxide anion and superoxide dismutases. Free Radic. Biol. Med. 61, 370–383. https://doi.org/10.1016/j.freeradbiomed.2013.03.020 (2013).
Radad, K., Rausch, W. D. & Gille, G. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 49, 379–386. https://doi.org/10.1016/j.neuint.2006.04.005 (2006).
Robb, E. L. et al. Control of mitochondrial superoxide production by reverse electron transport at complex I. J. Biol. Chem. 293, 9869–9879. https://doi.org/10.1074/jbc.RA118.003647 (2018).
Nolfi-Donegan, D., Braganza, A. & Shiva, S. Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol. 37, 101674. https://doi.org/10.1016/j.redox.2020.101674 (2020).
Hill, B. G. et al. Integration of cellular bioenergetics with mitochondrial quality control and autophagy. Biol. Chem. 393, 1485–1512. https://doi.org/10.1515/hsz-2012-0174 (2012).
Bao, Y. et al. Mitochondrial reverse electron transport: mechanisms, pathophysiological roles, and therapeutic potential. Biology 14, 1140. https://doi.org/10.3390/biology14091140 (2025).
Shetty, P. K., Galeffi, F. & Turner, D. A. Nicotinamide pretreatment ameliorates NAD(H) hyperoxidation and improves neuronal function after severe hypoxia. Neurobiol. Dis. 62, 469–478. https://doi.org/10.1016/j.nbd.2013.10.025 (2014).
Vinokurov, A. Y. et al. Energy substrate supplementation increases ATP levels and is protective to PD neurons. Curr. Res. Pharmacol. Drug Discov.. 6, 100187. https://doi.org/10.1016/j.crphar.2024.100187 (2024).
Wu, Q. J. et al. The Sirtuin family in health and disease. Signal. Transduct. Target. Ther. 7, 402. https://doi.org/10.1038/s41392-022-01257-8 (2022).
Tseng, A. H., Shieh, S. S. & Wang, D. L. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic Biol. Med. 63, 222–234. https://doi.org/10.1016/j.freeradbiomed.2013.05.002 (2013).
Klimova, N., Long, A. & Kristian, T. Nicotinamide mononucleotide alters mitochondrial dynamics by a SIRT3-dependent mechanism in male mice. J. Neurosci. Res. 97, 975–990. https://doi.org/10.1002/jnr.24397 (2019).
Weir, H. J., Lane, J. D. & Balthasar, N. SIRT3: a central regulator of mitochondrial adaptation in health and disease. Genes Cancer. 4, 118–124. https://doi.org/10.1177/1947601913476949 (2013).
Li, Y. et al. Role of SIRT3 in neurological diseases and rehabilitation training.Metab. Brain Dis. 38, 69–89. https://doi.org/10.1007/s11011-022-01111-4 (2023).
Sun, X., Li, Q. & Chen, B. Role of mitochondrial dynamics in mouse preimplantation embryonic development and its molecular mechanisms. Sci. Rep. 15, 21751. https://doi.org/10.1038/s41598-025-05622-9 (2025).
Wakabayashi, J. et al. The dynamin-related GTPase Drp1 is required for embryonic and brain development in mice. J. Cell. Biol. 186, 805–816. https://doi.org/10.1083/jcb.200903065 (2009).
Loh, J. K. et al. GSKIP- and GSK3-mediated anchoring strengthens cAMP/PKA/Drp1 axis signaling in the regulation of mitochondrial elongation. Biochim. Biophys. Acta. 1853, 1796–1807. https://doi.org/10.1016/j.bbamcr.2015.04.013 (2015).
Fang, D., Qing, Y., Yan, S., Chen, D. & Yan, S. S. Development and dynamic regulation of mitochondrial network in human midbrain dopaminergic neurons differentiated from iPSCs. Stem Cell. Rep. 7, 678–692. https://doi.org/10.1016/j.stemcr.2016.08.014 (2016).
Lebeau, J. et al. The PERK arm of the unfolded protein response regulates mitochondrial morphology during acute Endoplasmic reticulum stress. Cell. Rep. 22, 2827–2836. https://doi.org/10.1016/j.celrep.2018.02.055 (2018).
Tondera, D. et al. SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J. 28, 1589–1600. https://doi.org/10.1038/emboj.2009.89 (2009).
Yi, C. X. et al. TNFα drives mitochondrial stress in POMC neurons in obesity. Nat. Commun. 8, 15143. https://doi.org/10.1038/ncomms15143 (2017).
Tong, M., Zablocki, D. & Sadoshima, J. The role of Drp1 in mitophagy and cell death in the heart. J. Mol. Cell. Cardiol. 142, 138–145. https://doi.org/10.1016/j.yjmcc.2020.02.009 (2020).
Rocha, S. M. et al. Microglia-specific knock-out of NF-κB/IKK2 increases the accumulation of misfolded α-synuclein through the Inhibition of p62/sequestosome-1-dependent autophagy in the rotenone model of parkinson’s disease. Glia 71, 2154–2179. https://doi.org/10.1002/glia.24385 (2023).
Mader, B. J. et al. Rotenone inhibits autophagic flux prior to inducing cell death. ACS Chem. Neurosci. 3, 1063–1072. https://doi.org/10.1021/cn300145z (2012).
Wu, F. et al. Rotenone impairs autophagic flux and lysosomal functions in parkinson’s disease. Neuroscience 284, 900–911. https://doi.org/10.1016/j.neuroscience.2014.11.004 (2015).
Kataura, T. et al. Targeting the autophagy–NAD axis protects against cell death in Niemann–Pick type C1 disease models. Cell. Death Dis. 15, 382. https://doi.org/10.1038/s41419-024-06770-y (2024).
Cabello-Rivera, D., Sarmiento-Soto, H., López-Barneo, J. & Muñoz-Cabello, A. M. Mitochondrial complex I function is essential for neural stem/progenitor cell proliferation and differentiation. Front. Neurosci. 13, 664. https://doi.org/10.3389/fnins.2019.00664 (2019).
Marshall, L. E. & Himes, R. H. Rotenone Inhibition of tubulin self-assembly. Biochim. Biophys. Acta. 543, 590–594. https://doi.org/10.1016/0304-4165(78)90315-X (1978).
Ren, Y., Liu, W., Jiang, H., Jiang, Q. & Feng, J. Selective vulnerability of dopaminergic neurons to microtubule depolymerization. J. Biol. Chem. 280, 34105–34112 (2005).
Srivastava, P. & Panda, D. Rotenone inhibits mammalian cell proliferation by inhibiting microtubule assembly through tubulin binding. FEBS J. 274, 4788–4801 (2007).
Virga, D. M., Capps, J. & Vohra, B. P. S. Enteric neurodegeneration is mediated through independent neuritic and somal mechanisms in rotenone and MPP⁺ toxicity. Neurochem. Res. 43, 2288–2303 (2018).
Oswald, M. C. W., Brooks, P. S., Zwart, M. F., Cader, M. Z. & Landgraf, M. Reactive oxygen species regulate activity-dependent neuronal plasticity in drosophila. eLife 7, e39393 (2018).
Dhawan, S. et al. Reactive oxygen species mediate activity-regulated dendritic plasticity through NADPH oxidase and Aquaporin regulation. Front. Cell. Neurosci. 15, 641802 (2021).
Wilson, C., Núñez, M. T. & González-Billault, C. Contribution of NADPH oxidase to the establishment of hippocampal neuronal Polarity in culture. J. Cell. Sci. 128, 2989–2995 (2015).
Mengual, R. et al. Endogenous mitochondrial hydrogen peroxide regulates neurogenesis during cortical development. Redox Biol. 103, 103940 (2025).
Freestone, P. S. et al. Acute action of rotenone on nigral dopaminergic neurons: involvement of reactive oxygen species and disruption of Ca2+ homeostasis. Eur. J. Neurosci. 30, 1849–1859 (2009).
Mallik, B. & Frank, C. A. Roles for mitochondrial complex I subunits in regulating synaptic transmission and growth. Front. Neurosci. 16, 846425 (2022).
Kim, D. Y., Vallejo, J. & Rho, J. M. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors. J. Neurochem. 114, 130–141 (2010).
Kimura, R. et al. Acute exposure to the mitochondrial complex I toxin rotenone impairs synaptic long-term potential in rat hippocampal slices. CNS Neurosci. Ther. 18, 641–646 (2012).
Zhang, D. et al. Microglial activation contributes to cognitive impairments in rotenone-induced mouse parkinson’s disease model. J. Neuroinflamm. 18, 4 (2021).
Hamilton, D. M. et al. Activity-dependent compartmentalization of dendritic mitochondria morphology through local regulation of fusion–fission balance in neurons in vivo. Nat. Commun. 15, 2142 (2024).
Acknowledgements
We gratefully acknowledge Dr. Pedro Ismael da Silva Júnior from the LETA Laboratory at the Butantan Institute for his valuable assistance with the HPLC analysis. We also thank animal facilities personnel for the animal care. Additionally, we acknowledge Dr. Fernando Delgado Pretel from the Biomedical Sciences Institute III – CEFAP Facilities at the University of São Paulo for his support in obtaining confocal microscopy images, and Dr. Mario Costa Cruz from the Biomedical Sciences Institute IV – CEFAP Facilities at the University of São Paulo for his assistance in developing the synaptic analysis pipeline. We also thank Professor Alicia Kowaltowski and Camille Caldeira, from the Laboratory of Bioenergetics, Mitochondrial Ion Transport and Redox State at the Institute of Chemistry – University of São Paulo, for their valuable support with the Seahorse analysis.
Funding
This work was funded by: (i) Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP): 2015/02041–1 to TRR; 2016/07427-8, 2021/06009-6 to CS, 2016/22996-9 and 2019/12974-6 to EMK; 2021/03021-5 and 2023/14145-2 to AS; 2023-01789-9 to VCA; 2018/13814–0 to LFSS; 2021/12906-0 to MRR. (ii) Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq): 403646/2021-9; 472744/2012-7 to PISJ. (iii) Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES): CAPES – STINT program 88887.125409/2016-00 (Joint Brazilian-Swedish Research Collaboration and USP Neuroscience Research Support Centers); (iv) University of São Paulo grants (to DZA and LSL).
Author information
Authors and Affiliations
Contributions
AS, TRR and CS conceived and designed the experiments. AS, DZA, AMMO, MRR, VCA, LFSS, LSL and PISJ performed the experiments. AS, MRR, LFSS, EMK, PISJ, TRR and CS analyzed the data. AS, LFSS, TRR and CS wrote the paper. All authors reviewed the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Ethical approval
All animal experiments were performed according to the ARRIVE (Animal Research: Reporting of In vivo Experiments) guidelines. This study was also carried out in accordance with (i) Guidance on the operation of the Animals (Scientific Procedures) Act 1986 and associated guidelines; (ii) EU Directive 2010/63 for the protection of animals used for scientific purposes; (iii) Brazilian Society for Laboratory Animal Science (SBCAL); (iv) the National Council for the Control of Animal Experimentation (CONCEA) law 11794/2008. The methodology was approved by the Ethics Committee from University of São Paulo Biomedical Sciences Institute protocol registered under no. 4482061120 (ID 001756), approved on 01/19/2021, and extended on 01/29/2025 (Of. CEUA. 4482061120 - ID 036313) until January 31, 2027.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Siena, A., Luiz Felipe Souza, E., Araujo, V.C. et al. Nicotinamide counteracts Rotenone-induced mitochondrial and neuronal dysfunction in a translational early-life model. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36651-7
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-36651-7