Abstract
We reported vertically-stacking architecture of Si-Si3N4 embedded Ge quantum dots (QDs) array for quantum nanophotonics. Salient features of ordered, stacking Ge QDs lie in good control over the QD size, spherical-shape, and spatial location without relying on lithographic definition. Mie-mediated interaction of Ge QDs with Si nanolayers is characterized by edge enhanced Raman scattering (EERS) of Si and photoluminescence of Ge QDs at the visible−near infrared bands. Ge QDs PIN diodes with 40 nm-wide intrinsic region showcase high gain× bandwidth > 107 GHz A/A at zero bias for self-powered, energy-efficient photodetection.
Data availability
The datasets used and analyzed during the current study available from the corresponding author on reasonable request.
References
Silverstone, J. W., Bonneau, D., O’Brien, J. L. & Thompson, M. G. Silicon quantum photonics. IEEE J. Select Top. Quantum Electron. 22, 390–402. https://doi.org/10.1109/JSTQE.2016.2573218 (2016).
Shekhar, S. et al. Road mapping the next generation of silicon photonics. Nat. Commun. 15 https://doi.org/10.1038/s41467-024-44750-0 (2024).
Bowers, J. et al. Integrated quantum dot lasers and high capacity silicon photonic integrated circuits. In IEDM, San Francisco, CA, USA, (2024). https://doi.org/10.1109/IEDM50854.2024.10873445
Mii, Y. J. Semiconductor industry outlook and new technology frontiers. In IEDM, San Francisco, CA, USA. https://doi.org/10.1109/IEDM50854.2024.10873484 (2024)
Koshelev, K. & Kivshar, Y. Dielectric resonant metaphotonics. ACS Photonics. 8, 102–112. https://doi.org/10.1021/acsphotonics.0c01315 (2020).
Zhang, J. & Kivshar, Y. Quantum metaphotonics: recent advances and perspective. APL Quantum. 1 https://doi.org/10.1063/5.0201107 (2024).
Rutckaia, V. et al. Coupling of germanium quantum dots with collective sub-radiant modes of silicon nanopillar arrays. ACS Photonics. 8, 209–217. https://doi.org/10.1021/acsphotonics.0c01319 (2021).
Baranov, D. G. et al. All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica 4, 814–825. https://doi.org/10.1364/OPTICA.4.000814 (2017).
Rutckaia, V. et al. Quantum dot emission driven by Mie resonances in silicon nanostructures. Nano Lett. 17, 6886–6892. https://doi.org/10.1021/acs.nanolett.7b03248 (2017).
Aouassa, M. et al. Growth of Ge QDs-decorated SiGe nanocrystals: toward integration of quantum dots and Mie resonators in ultrathin film for photodetection and energy harvesting. ACS Appl. Electron. Mater. 6, 3290–3296. https://doi.org/10.1021/acsaelm.4c00126 (2024).
Zhang, N. et al. An array of SiGe nanodisks with Ge quantum dots on bulk Si substrates demonstrating a unique light–matter interaction associated with dual coupling. Nanoscale 11, 15487–15496. https://doi.org/10.1039/C9NR00798A (2019).
Staude, I., Pertsch, T. & Kivshar, Y. S. All-dielectric resonant meta-optics lightens up. Acs Photonics. 6, 802–814. https://doi.org/10.1021/acsphotonics.8b01326 (2019).
Zograf, G. P. et al. Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles. Nano Lett. 20, 5786–5791. https://doi.org/10.1021/acs.nanolett.0c01646 (2020).
Poborchii, V., Tada, T. & Kanayama, T. Edge-enhanced Raman scattering in Si nanostripes. Appl. Phys. Lett. 94 https://doi.org/10.1063/1.3110964 (2009).
Matthiae, M. et al. Probing optical resonances of silicon nanostructures using tunable-excitation Raman spectroscopy. Opt. Express. 27, 38479–38492. https://doi.org/10.1364/OE.385088 (2019).
Höppener, C. et al. Tip-enhanced Raman scattering. Nat. Rev. Methods Primers. 4 https://doi.org/10.1038/s43586-024-00323-5 (2024).
Yuan, S. et al. Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor. ACS Nano. 11, 10704–10711. https://doi.org/10.1021/acsnano.7b04810 (2017).
Reparaz, J. S. et al. Phonon pressure coefficient as a probe of the strain status of self-assembled quantum dots. Appl. Phys. Lett. 91. https://doi.org/10.1063/1.2773958 (2007).
Reparaz, J. S., Marcus, I. C., Goñi, A. R., Garriga, M. & Alonso, M. I. Influence of alloy inhomogeneities on the determination by Raman scattering of composition and strain in Si1–xGex/Si (001) layers. J. Appl. Phys. 112 https://doi.org/10.1063/1.4737486 (2012).
Raza, S. & Kristensen, A. Raman scattering in high-refractive-index nanostructures. Nanophotonics 10, 1197–1209. https://doi.org/10.1515/nanoph-2020-0539 (2021).
Bouabdellaoui, M. et al. Engineering epitaxy and condensation: fabrication of Ge nanolayers, mechanism and applications. Appl. Surf. Sci. 630. https://doi.org/10.1016/j.apsusc.2023.157226 (2023).
Shklyaev, A. A. & Latyshev, A. V. Dewetting behavior of Ge layers on SiO2 under annealing. Sci. Rep. 10. https://doi.org/10.1038/s41598-020-70723-6 (2020).
Freddi, S. et al. Morphological evolution and structural study of annealed amorphous-Ge films: interplay between crystallization and dewetting. Mater. Sci. Semiconduct. Process. 174 https://doi.org/10.1016/j.mssp.2024.108228 (2024).
Wu, J., Chen, S., Seeds, A. & Liu, H. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J. Phys. D: Appl. Phys. 48. https://doi.org/10.1088/0022-3727/48/36/363001 (2015).
Liao, P. H. et al. Self-organized gate stack of Ge nanosphere/SiO2/Si1-xGex enables Ge-based monolithically-integrated electronics and photonics on Si platform. in IEEE Symp. VLSI Techn., Honolulu, HI, USA, 157–158. https://doi.org/10.1109/VLSIT.2018.8510695 (2018).
Wang, I. H. et al. The wonderful world of designer Ge quantum dots. in IEDM, San Francisco, CA, USA, 38.1.1–38.1.4. https://doi.org/10.1109/IEDM13553.2020.9372027 (2020).
Wang, I-H. et al. Reconfigurable germanium quantum-dot arrays for CMOS integrable quantum electronic devices. in Symposium on VLSI Circuits, (Kyoto, Japan, 2021). https://doi.org/10.23919/VLSICircuits52068.2021.9492360
George, T., Li, P. W., Chen, K. H., Peng, K. P. & Lai, W. T. Symbiotic’ semiconductors: unusual and counter-intuitive Ge/Si/O interactions. J. Phys. D: Appl. Phys. 50, 105101. https://doi.org/10.1088/1361-6463/aa59ab (2017).
Hong, P. Y. et al. The amazing world of self-organized Ge quantum dots for Si photonics on sin platforms. Appl. Phys. A. 129, 126. https://doi.org/10.1007/s00339-022-06332 (2023).
Freddi, S. et al. Strain-driven dewetting and interdiffusion in SiGe thin films on SOI for CMOS-compatible nanostructures. Nanomaterials 15, 965. https://doi.org/10.3390/nano15130965 (2025).
Bogdanowicz, J. et al. Nanofocusing of light into semiconducting fin photonic crystals. Appl. Phys. Lett. 108 https://doi.org/10.1063/1.4942603 (2016).
Regmi, R. et al. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano lett. 16, 5143–5151. https://doi.org/10.1021/acs.nanolett.6b02076 (2016).
Van de Groep, J. & Polman, A. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express. 21, 26285–26302. https://doi.org/10.1364/OE.21.026285 (2013).
Chien, C. Y. et al. Size tunable Ge quantum dots for near-ultraviolet to near-infrared photosensing with high figures of merit. Nanoscale 6, 5303–5308. https://doi.org/10.1039/C4NR00168K (2014).
Kuo, Y. H. et al. Nitride-stressor and quantum-size engineering in Ge quantum-dot photoluminescence wavelength and exciton lifetime. Nano Futures. 4, 015001. https://doi.org/10.1088/2399-1984/ab794d (2020).
Baraban, A. P. et al. Luminescence of SiO2 layers on silicon at various types of excitation. J. Luminescence. 205, 102–108. https://doi.org/10.1016/j.jlumin.2018.09.009 (2019).
Senichev, A. et al. Room-temperature single-photon emitters in silicon nitride. Sci. Adv. 7, eabj0627. https://doi.org/10.1126/sciadv.abj0627 (2021).
Delley, B. & Steigmeier, E. F. Quantum confinement in Si nanocrystals. Phys. Rev. B. 47, 1397–1400. https://doi.org/10.1103/PhysRevB.47.1397 (1993).
Li, P. W., Kuo, M. T., Liao, W. M. & Tsai, M. J. Optical and electronic characteristics of germanium quantum dots formed by selective oxidation of SiGe/Si-on-Insulator. Jpn J. Appl. Phys. 43, 7788–7792. https://doi.org/10.1143/JJAP.43.7788 (2004).
Lin, C. H. et al. Self-Organized germanium quantum dots/Si3N4 enabling monolithic integration of top Si3N4-waveguided microdisk light emitters and p-i-n photodetectors for On-Chip sensing. IEEE Trans. Electron. Devices. 70, 2113–2120. https://doi.org/10.1109/TED.2023.3238330 (2023).
Kuo, M. H. et al. Designer germanium quantum dot phototransistor for near infrared optical detection and amplification. Nanotechnology 26. https://doi.org/10.1088/0957-4484/26/5/055203 (2015).
Kuo, M. H., Wang, C. C., Lai, W. T., George, T. & Li, P. W. Designer Ge quantum dots on si: A heterostructure configuration with enhanced optoelectronic performance. Appl. Phys. Lett. 101, 203107. https://doi.org/10.1063/1.4768292 (2012).
Funding
This work was financially supported by Honghai Research Institute, MA-tek, and National Science and Technology Council, Taiwan 114UA90042, 114-2119-M-A49-005, 113-2927-I-A49-503 and 112-2221-E-A49-162-MY3. MIA acknowledges projects CEX2023-001263-S and PID2022-141956NB-I00 of MICIU (Spain), as well as the CSIC (Spain)-NSTC (Taiwan) collaboration BILTW22002.
Author information
Authors and Affiliations
Contributions
Y.S.H. conducted the fabrication and COMSOL simulation of stacking Ge-QDs array and Ge QDs P-I-N photodetector. M.I.A conducted µ-Raman measurement, data analysis and manuscript preparation. L.H.C. contributed to data analysis. L.P.W. conceived the study, supervised the work, and contributed to data analysis and manuscript preparation. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Yang, SH., Alonso, M.I., Lin, HC. et al. Mie-mediated edge-enhanced Raman scattering of vertically-stacking ge quantum-dots/Si-SiN array for enhancing photoluminescence and photodetection. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36743-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598-026-36743-4