Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Mie-mediated edge-enhanced Raman scattering of vertically-stacking ge quantum-dots/Si-SiN array for enhancing photoluminescence and photodetection
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Mie-mediated edge-enhanced Raman scattering of vertically-stacking ge quantum-dots/Si-SiN array for enhancing photoluminescence and photodetection

  • Shih-Hsiang Yang1,
  • Maria Isabel Alonso2,
  • Horng-Chih Lin1 &
  • …
  • Pei-Wen Li1 

Scientific Reports , Article number:  (2026) Cite this article

  • 512 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Materials science
  • Nanoscience and technology
  • Optics and photonics
  • Physics

Abstract

We reported vertically-stacking architecture of Si-Si3N4 embedded Ge quantum dots (QDs) array for quantum nanophotonics. Salient features of ordered, stacking Ge QDs lie in good control over the QD size, spherical-shape, and spatial location without relying on lithographic definition. Mie-mediated interaction of Ge QDs with Si nanolayers is characterized by edge enhanced Raman scattering (EERS) of Si and photoluminescence of Ge QDs at the visible−near infrared bands. Ge QDs PIN diodes with 40 nm-wide intrinsic region showcase high gain× bandwidth > 107 GHz A/A at zero bias for self-powered, energy-efficient photodetection.

Data availability

The datasets used and analyzed during the current study available from the corresponding author on reasonable request.

References

  1. Silverstone, J. W., Bonneau, D., O’Brien, J. L. & Thompson, M. G. Silicon quantum photonics. IEEE J. Select Top. Quantum Electron. 22, 390–402. https://doi.org/10.1109/JSTQE.2016.2573218 (2016).

    Google Scholar 

  2. Shekhar, S. et al. Road mapping the next generation of silicon photonics. Nat. Commun. 15 https://doi.org/10.1038/s41467-024-44750-0 (2024).

  3. Bowers, J. et al. Integrated quantum dot lasers and high capacity silicon photonic integrated circuits. In IEDM, San Francisco, CA, USA, (2024). https://doi.org/10.1109/IEDM50854.2024.10873445

  4. Mii, Y. J. Semiconductor industry outlook and new technology frontiers. In IEDM, San Francisco, CA, USA. https://doi.org/10.1109/IEDM50854.2024.10873484 (2024)

  5. Koshelev, K. & Kivshar, Y. Dielectric resonant metaphotonics. ACS Photonics. 8, 102–112. https://doi.org/10.1021/acsphotonics.0c01315 (2020).

    Google Scholar 

  6. Zhang, J. & Kivshar, Y. Quantum metaphotonics: recent advances and perspective. APL Quantum. 1 https://doi.org/10.1063/5.0201107 (2024).

  7. Rutckaia, V. et al. Coupling of germanium quantum dots with collective sub-radiant modes of silicon nanopillar arrays. ACS Photonics. 8, 209–217. https://doi.org/10.1021/acsphotonics.0c01319 (2021).

    Google Scholar 

  8. Baranov, D. G. et al. All-dielectric nanophotonics: the quest for better materials and fabrication techniques. Optica 4, 814–825. https://doi.org/10.1364/OPTICA.4.000814 (2017).

    Google Scholar 

  9. Rutckaia, V. et al. Quantum dot emission driven by Mie resonances in silicon nanostructures. Nano Lett. 17, 6886–6892. https://doi.org/10.1021/acs.nanolett.7b03248 (2017).

    Google Scholar 

  10. Aouassa, M. et al. Growth of Ge QDs-decorated SiGe nanocrystals: toward integration of quantum dots and Mie resonators in ultrathin film for photodetection and energy harvesting. ACS Appl. Electron. Mater. 6, 3290–3296. https://doi.org/10.1021/acsaelm.4c00126 (2024).

    Google Scholar 

  11. Zhang, N. et al. An array of SiGe nanodisks with Ge quantum dots on bulk Si substrates demonstrating a unique light–matter interaction associated with dual coupling. Nanoscale 11, 15487–15496. https://doi.org/10.1039/C9NR00798A (2019).

    Google Scholar 

  12. Staude, I., Pertsch, T. & Kivshar, Y. S. All-dielectric resonant meta-optics lightens up. Acs Photonics. 6, 802–814. https://doi.org/10.1021/acsphotonics.8b01326 (2019).

    Google Scholar 

  13. Zograf, G. P. et al. Stimulated Raman scattering from Mie-resonant subwavelength nanoparticles. Nano Lett. 20, 5786–5791. https://doi.org/10.1021/acs.nanolett.0c01646 (2020).

    Google Scholar 

  14. Poborchii, V., Tada, T. & Kanayama, T. Edge-enhanced Raman scattering in Si nanostripes. Appl. Phys. Lett. 94 https://doi.org/10.1063/1.3110964 (2009).

  15. Matthiae, M. et al. Probing optical resonances of silicon nanostructures using tunable-excitation Raman spectroscopy. Opt. Express. 27, 38479–38492. https://doi.org/10.1364/OE.385088 (2019).

    Google Scholar 

  16. Höppener, C. et al. Tip-enhanced Raman scattering. Nat. Rev. Methods Primers. 4 https://doi.org/10.1038/s43586-024-00323-5 (2024).

  17. Yuan, S. et al. Strong photoluminescence enhancement in all-dielectric Fano metasurface with high quality factor. ACS Nano. 11, 10704–10711. https://doi.org/10.1021/acsnano.7b04810 (2017).

    Google Scholar 

  18. Reparaz, J. S. et al. Phonon pressure coefficient as a probe of the strain status of self-assembled quantum dots. Appl. Phys. Lett. 91. https://doi.org/10.1063/1.2773958 (2007).

  19. Reparaz, J. S., Marcus, I. C., Goñi, A. R., Garriga, M. & Alonso, M. I. Influence of alloy inhomogeneities on the determination by Raman scattering of composition and strain in Si1–xGex/Si (001) layers. J. Appl. Phys. 112 https://doi.org/10.1063/1.4737486 (2012).

  20. Raza, S. & Kristensen, A. Raman scattering in high-refractive-index nanostructures. Nanophotonics 10, 1197–1209. https://doi.org/10.1515/nanoph-2020-0539 (2021).

    Google Scholar 

  21. Bouabdellaoui, M. et al. Engineering epitaxy and condensation: fabrication of Ge nanolayers, mechanism and applications. Appl. Surf. Sci. 630. https://doi.org/10.1016/j.apsusc.2023.157226 (2023).

  22. Shklyaev, A. A. & Latyshev, A. V. Dewetting behavior of Ge layers on SiO2 under annealing. Sci. Rep. 10. https://doi.org/10.1038/s41598-020-70723-6 (2020).

  23. Freddi, S. et al. Morphological evolution and structural study of annealed amorphous-Ge films: interplay between crystallization and dewetting. Mater. Sci. Semiconduct. Process. 174 https://doi.org/10.1016/j.mssp.2024.108228 (2024).

  24. Wu, J., Chen, S., Seeds, A. & Liu, H. Quantum dot optoelectronic devices: lasers, photodetectors and solar cells. J. Phys. D: Appl. Phys. 48. https://doi.org/10.1088/0022-3727/48/36/363001 (2015).

  25. Liao, P. H. et al. Self-organized gate stack of Ge nanosphere/SiO2/Si1-xGex enables Ge-based monolithically-integrated electronics and photonics on Si platform. in IEEE Symp. VLSI Techn., Honolulu, HI, USA, 157–158. https://doi.org/10.1109/VLSIT.2018.8510695 (2018).

  26. Wang, I. H. et al. The wonderful world of designer Ge quantum dots. in IEDM, San Francisco, CA, USA, 38.1.1–38.1.4. https://doi.org/10.1109/IEDM13553.2020.9372027 (2020).

  27. Wang, I-H. et al. Reconfigurable germanium quantum-dot arrays for CMOS integrable quantum electronic devices. in Symposium on VLSI Circuits, (Kyoto, Japan, 2021). https://doi.org/10.23919/VLSICircuits52068.2021.9492360

  28. George, T., Li, P. W., Chen, K. H., Peng, K. P. & Lai, W. T. Symbiotic’ semiconductors: unusual and counter-intuitive Ge/Si/O interactions. J. Phys. D: Appl. Phys. 50, 105101. https://doi.org/10.1088/1361-6463/aa59ab (2017).

    Google Scholar 

  29. Hong, P. Y. et al. The amazing world of self-organized Ge quantum dots for Si photonics on sin platforms. Appl. Phys. A. 129, 126. https://doi.org/10.1007/s00339-022-06332 (2023).

    Google Scholar 

  30. Freddi, S. et al. Strain-driven dewetting and interdiffusion in SiGe thin films on SOI for CMOS-compatible nanostructures. Nanomaterials 15, 965. https://doi.org/10.3390/nano15130965 (2025).

    Google Scholar 

  31. Bogdanowicz, J. et al. Nanofocusing of light into semiconducting fin photonic crystals. Appl. Phys. Lett. 108 https://doi.org/10.1063/1.4942603 (2016).

  32. Regmi, R. et al. All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano lett. 16, 5143–5151. https://doi.org/10.1021/acs.nanolett.6b02076 (2016).

    Google Scholar 

  33. Van de Groep, J. & Polman, A. Designing dielectric resonators on substrates: combining magnetic and electric resonances. Opt. Express. 21, 26285–26302. https://doi.org/10.1364/OE.21.026285 (2013).

    Google Scholar 

  34. Chien, C. Y. et al. Size tunable Ge quantum dots for near-ultraviolet to near-infrared photosensing with high figures of merit. Nanoscale 6, 5303–5308. https://doi.org/10.1039/C4NR00168K (2014).

    Google Scholar 

  35. Kuo, Y. H. et al. Nitride-stressor and quantum-size engineering in Ge quantum-dot photoluminescence wavelength and exciton lifetime. Nano Futures. 4, 015001. https://doi.org/10.1088/2399-1984/ab794d (2020).

    Google Scholar 

  36. Baraban, A. P. et al. Luminescence of SiO2 layers on silicon at various types of excitation. J. Luminescence. 205, 102–108. https://doi.org/10.1016/j.jlumin.2018.09.009 (2019).

    Google Scholar 

  37. Senichev, A. et al. Room-temperature single-photon emitters in silicon nitride. Sci. Adv. 7, eabj0627. https://doi.org/10.1126/sciadv.abj0627 (2021).

    Google Scholar 

  38. Delley, B. & Steigmeier, E. F. Quantum confinement in Si nanocrystals. Phys. Rev. B. 47, 1397–1400. https://doi.org/10.1103/PhysRevB.47.1397 (1993).

    Google Scholar 

  39. Li, P. W., Kuo, M. T., Liao, W. M. & Tsai, M. J. Optical and electronic characteristics of germanium quantum dots formed by selective oxidation of SiGe/Si-on-Insulator. Jpn J. Appl. Phys. 43, 7788–7792. https://doi.org/10.1143/JJAP.43.7788 (2004).

    Google Scholar 

  40. Lin, C. H. et al. Self-Organized germanium quantum dots/Si3N4 enabling monolithic integration of top Si3N4-waveguided microdisk light emitters and p-i-n photodetectors for On-Chip sensing. IEEE Trans. Electron. Devices. 70, 2113–2120. https://doi.org/10.1109/TED.2023.3238330 (2023).

    Google Scholar 

  41. Kuo, M. H. et al. Designer germanium quantum dot phototransistor for near infrared optical detection and amplification. Nanotechnology 26. https://doi.org/10.1088/0957-4484/26/5/055203 (2015).

  42. Kuo, M. H., Wang, C. C., Lai, W. T., George, T. & Li, P. W. Designer Ge quantum dots on si: A heterostructure configuration with enhanced optoelectronic performance. Appl. Phys. Lett. 101, 203107. https://doi.org/10.1063/1.4768292 (2012).

    Google Scholar 

Download references

Funding

This work was financially supported by Honghai Research Institute, MA-tek, and National Science and Technology Council, Taiwan 114UA90042, 114-2119-M-A49-005, 113-2927-I-A49-503 and 112-2221-E-A49-162-MY3. MIA acknowledges projects CEX2023-001263-S and PID2022-141956NB-I00 of MICIU (Spain), as well as the CSIC (Spain)-NSTC (Taiwan) collaboration BILTW22002.

Author information

Authors and Affiliations

  1. Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

    Shih-Hsiang Yang, Horng-Chih Lin & Pei-Wen Li

  2. Institute of Materials Science of Barcelona, ICMAB-CSIC, Bellaterra, 08193, Spain

    Maria Isabel Alonso

Authors
  1. Shih-Hsiang Yang
    View author publications

    Search author on:PubMed Google Scholar

  2. Maria Isabel Alonso
    View author publications

    Search author on:PubMed Google Scholar

  3. Horng-Chih Lin
    View author publications

    Search author on:PubMed Google Scholar

  4. Pei-Wen Li
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.S.H. conducted the fabrication and COMSOL simulation of stacking Ge-QDs array and Ge QDs P-I-N photodetector. M.I.A conducted µ-Raman measurement, data analysis and manuscript preparation. L.H.C. contributed to data analysis. L.P.W. conceived the study, supervised the work, and contributed to data analysis and manuscript preparation. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pei-Wen Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Alonso, M.I., Lin, HC. et al. Mie-mediated edge-enhanced Raman scattering of vertically-stacking ge quantum-dots/Si-SiN array for enhancing photoluminescence and photodetection. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36743-4

Download citation

  • Received: 26 November 2025

  • Accepted: 16 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36743-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • germanium
  • quantum dots
  • EERS
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing