Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
The influence of freeze-thaw action and particle size characteristics on the shear resistance of black soil
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 24 January 2026

The influence of freeze-thaw action and particle size characteristics on the shear resistance of black soil

  • Rongfei Zhao1,2 na1,
  • Haohao Chang1,2 na1,
  • Jincheng Yu1,2 na1,
  • Donghao Huang1,2 na1,
  • Defeng Yang1,2 na1,
  • Huimin Yang1,2 na1 &
  • …
  • Lili Zhou1,2 na1 

Scientific Reports , Article number:  (2026) Cite this article

  • 289 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecology
  • Environmental sciences

Abstract

To explore how freeze-thaw action modulates the relationship between particle size and soil shear strength, cohesion (c), internal friction angle (φ), and shear strength (τ) of seven particle size groups (at 4% water content) were measured using a direct shear apparatus. Results show: Particle size significantly influences c dynamics. naturally graded soil and d ≥ 1 mm (particle size ≥ 1 mm) groups exhibit decreasing c with freeze-thaw cycles, while d < 1 mm groups show the opposite trend. Among them, d5–10 mm groups are least affected, and d < 0.25 mm groups are most affected, with c stabilizing after 6–9 cycles. For φ, d ≥ 2 mm groups first increase then decrease, whereas d < 2 mm groups show the reverse. d < 0.25 mm groups retain the highest φ values; after 30 cycles, d2 –5 mm groups exhibit the largest φ decrease (− 4.70%), while d0.5−1 mm groups show a slight increase (2.17%). Naturally graded soil has the highest τ due to inter-particle synergistic effects, with d1–2 mm groups leading among single particle size groups. τ correlates positively with cycles for d < 1 mm groups but negatively for naturally graded soil and d ≥ 1 mm groups. Particle size dominates shear resistance (c:71.78%, φ:45.43%, τ:53.22%), with freeze-thaw cycles as a key secondary factor (18.82%, 11.27%, 20.52%).

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Zhao, R. F., Fu, J., Feng, B. B. & Gao, W. Optimization research of sodium hydroxide pretreatment to enhance the thermal properties of straw-mortar composite materials. Sustainability 16 (12), 5239. https://doi.org/10.3390/SU16125239 (2024).

    Google Scholar 

  2. Zhao, R. F., Feng, B. B., Fu, J. & Gao, W. Study on improving physical–mechanical properties and frost resistance of straw–mortar composite wall materials by pretreatment. Sustainability 16 (13), 5608. https://doi.org/10.3390/su16135608 (2024).

    Google Scholar 

  3. Zhao, R. F. et al. Experimental study on the thermal performance of rice straw-mortar composite materials. KSCE J. Civ. Eng. 26 (1), 260–272. https://doi.org/10.1007/S12205-021-0087-9 (2021).

    Google Scholar 

  4. Sun, B. Y. et al. Research progress on the effects of freezing and thawing on soil physical and chemical properties and wind-water erosion. Chin. J. Appl. Ecol. 30 (01), 337–347. https://doi.org/10.13287/j.1001-9332.201901.019 (2019).

    Google Scholar 

  5. Zhang, G. H., Yang, Y., Liu, Y. N. & Wang, Z. Q. Research progress and prospect of soil erosion in black soil region of Northeast China. J. Soils Water Conserv. 36 (02), 1–12. https://doi.org/10.13870/j.cnki.stbcxb.2022.02.001 (2022).

    Google Scholar 

  6. Feng, Y., He, J. X., Liu, L. & Yang, L. X. Experimental study on shear strength characteristics of fine-grained soil under freeze-thaw cycles. J. Glaciol Geocryol. 30 (06), 1013–1017. https://doi.org/10.7522/j.issn.1000-0240.2008.0140 (2008).

    Google Scholar 

  7. Li, C. G., Zhao, X. Z., Zheng, J. & Cao, R. Research and work progress on freeze-thaw erosion. Technol. Soil Water Conserv. 02, 46–48. https://doi.org/10.3969/j.issn.1673-5366.2023.02.18 (2023).

    Google Scholar 

  8. Li, Q. et al. Effects of freeze-thaw on soil anti-scourability and related physical properties in loess hilly region. Trans. Chin. Soc. Agric. Eng. 29 (17), 105–112. https://doi.org/10.3969/j.issn.1002-6819.2013.17.014 (2013).

    Google Scholar 

  9. Ye, W. J., Li, C. Q., Yang, G. S., Liu, Z. X. & P, R. Q. Scale effect of loess structure damage under freeze-thaw environment. Rock Soil Mech. 39 (07), 2336–2343. https://doi.org/10.16285/j.rsm.2017.2168 (2018).

    Google Scholar 

  10. Jiang, Y., Liu, B., Fan, H. M. & Ma, R. M. Macropore structure characteristics of black soil under freeze-thaw conditions. Acta Pedol. Sin. 56 (02), 340–349. https://doi.org/10.11766/trxb201805230516 (2019).

    Google Scholar 

  11. Liu, H. Y., Yang, Y., Zhang, K. L. & Sun, C. L. Soil erosion as affected by freeze-thaw regime and initial soil moisture content. Soil Sci. Soc. Am. J. 81 (03), 459–446. https://doi.org/10.2136/sssaj2016.08.0271 (2017).

    Google Scholar 

  12. Chang, D., Liu, J. K., Li, X. & Yu, Q. M. Experimental study on the effect of freeze-thaw cycles on the mechanical properties of Qinghai-Tibet silty sand. Chin. J. Rock Mech. Eng. 33 (07), 1496–1502. https://doi.org/10.13722/j.cnki.jrme.2014.07.023 (2014).

    Google Scholar 

  13. Meeravali, K., Alla, S., Syed, H. & Ruben, N. An analysis of freeze-thaw cycles on geotechnical properties of soft- soil. Mater. Today: Proc. 27, 1304–1309. https://doi.org/10.1016/j.matpr.2020.02.266 (2020).

    Google Scholar 

  14. Zuo, X. F. et al. Effects of freeze-thaw cycles and soil properties on shear strength of black soil in Northeast China. J. Soils Water Conserv. 34 (02), 30–35. https://doi.org/10.13870/j.cnki.stbcxb.2020.02.005 (2020).

    Google Scholar 

  15. Steiner, A., Vardon, P. J. & Broere, W. The influence of freeze-thaw cycles on the shear strength of illite clay. Proc. Inst. Civ. Eng. Geotech. Eng. 171 (01), 16–27. https://doi.org/10.1680/jgeen.16.00101 (2018).

    Google Scholar 

  16. Fan, H. M., Chi, J. Y., Zhou, L. L., Wu, M. & Cheng, L. Difference analysis of shear strength of three soils in Northeast China under freeze-thaw conditions. J. Shenyang Agric. Univ. 51 (05), 606–611. https://doi.org/10.3969/j.issn.1000-1700.2020.05.012 (2020).

    Google Scholar 

  17. Zhao, R. F., Liu, X. C., Li, Q., Jin, D. & Gao, W. Experimental study on the effect of freeze-thaw cycles to the cohesion and moisture content of geogrid reinforced silty clay. Sci. Rep. 14 (1), 19478. https://doi.org/10.1038/S41598-024-68935-1 (2024).

    Google Scholar 

  18. Zhang, J. H. et al. Macro - micro characteristics variations and strength degradation mechanisms of sandy loam in yellow river embankments under freeze-thaw cycling. J. Arid Land. Resour. Environ. 39 (05), 140–154. https://doi.org/10.13448/j.cnki.jalre.2025.087 (2025).

    Google Scholar 

  19. Quan, X. J., Gong, Y. W., Wang, B., Zhong, G. F. & Zhou, S. W. Experimental study on the effect of freeze-thaw cycles on the shear strength of Qinghai-Tibet clay. J. Glaciol Geocryol. 45 (03), 1016–1025. https://doi.org/10.7522/j.issn.1000-0240.2023.0077 (2023).

    Google Scholar 

  20. Wang, L. et al. The effects of freeze-thaw cycles at different initial soil water contents on soil erodibility in Chinese Mollisol region. Catena 193, 104615. https://doi.org/10.1016/j.catena.2020.104615 (2020).

    Google Scholar 

  21. Zhu, L. X., Fan, H. M. & Ma, R. M. Effects of freeze-thaw cycles and soil water content on the disintegration characteristics of brown soil. Acta Pedol. Sin. 60 (01), 77–88. https://doi.org/10.11766/trxb202103020119 (2023).

    Google Scholar 

  22. Liu, J. J., Zhang, K. D., Shi, W. B., Liu, L. J. & Lu, C. Effects of freeze-thaw on soil detachment capacity in the black soil region of Northeastern China. Soil. Till Res. 236, 105946. https://doi.org/10.1016/j.still.2023.105946 (2024).

    Google Scholar 

  23. Sun, B. Y. et al. Effects of freeze-thaw on soil detachment capacity and erosion resistance. Trans. Chin. Soc. Agric. Eng. 36 (11), 57–65. https://doi.org/10.11975/j.issn.1002-6819.2020.11.007 (2020).

    Google Scholar 

  24. Gu, W. M., Zhou, J. X., Wang, B. & Guan, Y. H. Effects of freeze-thaw cycles on the characteristics of water-stable aggregates in black soil. Sci. Soil. Water Conserv. 18 (04), 45–52. https://doi.org/10.16843/j.sswc.2020.04.006 (2020).

    Google Scholar 

  25. Afrazi, M. & &Yazdani, M. Determination of the effect of soil particle size distribution on the shear behavior of sand. J. Adv. Eng. Comput. 5 (02), 125–134. https://doi.org/10.25073/jaec.202152.331 (2021).

    Google Scholar 

  26. Ning, F. W. et al. Super-large-scale triaxial tests to study the effect of particle size on dynamic characteristics of gravelly soils. Bull. Eng. Geol. Environ. 84, 377. https://doi.org/10.1007/s10064-025-04392-y (2025).

    Google Scholar 

  27. Yang, S. L., Cui, H. H. & Hu, J. H. Effect of fine particle content on mechanical properties of frozen silty clay. J. Glaciol. Geocryol. 46 (05), 1612–1622. https://doi.org/10.7522/j.issn.1000-0240.2024.0126 (2024).

    Google Scholar 

  28. Du, J., Hou, K. P., Cheng, Y. & Li, C. C. Characteristics of particle size distribution and shear strength of high bench dump. Min. Metall. Eng. 42 (06), 29–33. https://doi.org/10.3969/j.issn.0253-6099.2022.06.006 (2022).

    Google Scholar 

  29. Yu, Y. Y., Zhu, H. W., Jiang, Y. Z. & Liu, E. L. Effect of particle size on mechanical properties of coarse-fine mixed soil. Sichuan Build. Mater. 44 (09), 88–90. https://doi.org/10.3969/j.issn.1672-4011.2018.09.043 (2018).

    Google Scholar 

  30. Li, T. T. et al. Shear strength indices predication model for coarse-grained soil based on particle gradation and moisture content information. Bull. Eng. Geol. Environ. 84, 344. https://doi.org/10.1007/s10064-025-04296-x (2025).

    Google Scholar 

  31. Gao, C. et al. Effects of initial moisture and bulk density on the soil compression characteristics of black soil. Trans. Chin. Soc. Agric. Eng. 39 (9), 102–111. https://doi.org/10.11975/j.issn.1002-6819.202303108 (2023).

    Google Scholar 

  32. Wang, D. Y., Ma, W., Niu, Y. H., Zhang, X. X. & Wen, Z. Effects of cyclic freezing and thawing on mechanical properties of Qinghai–Tibet clay. Cold Reg. Sci. Technol. 48 (01), 34–43. https://doi.org/10.1016/j.coldregions.2006.09.008 (2007).

    Google Scholar 

  33. Wang, E. H., Zhao, Y. S., Xian, X. Y. & Chen, X. W. Effects of freeze-thaw cycles on black soil structure at different size scales. Acta Ecol. Sin. 34 (21), 6287–6296. https://doi.org/10.5846/stxb201307031829 (2014).

    Google Scholar 

  34. Shen, L., Yang, D. X., Zhang, J. J. & Luo, S. J. Research on the influence of freeze-thaw cycles on the friction coefficient of alpine subgrade soil. Highway 69 (12), 386–393. https://doi.org/10.3969/j.issn.0451-0712.2024.12.gl202412059 (2024).

    Google Scholar 

  35. Qiao, S. Y., Zhou, L. L., Fan, H. M., Jia, Y. F. & Wu, M. Study on the fractionation and bioavailability of inorganic phosphorus in black soil under freeze-thaw conditions. Soils 48 (2), 259–264. https://doi.org/10.13758/j.cnki.tr.2016.02.008 (2016).

    Google Scholar 

  36. China Standard, G. B. T. & 50123 Standard for Geotechnical Test methods. (2019). (2019).

  37. Liao, K. H., Xu, S. H., Wu, J. C. & Zhu, Z. Q. Comparative analysis of different soil transfer functions for predicting unsaturated hydraulic conductivity of sand. Adv. Water Sci. 24 (04), 560–567. https://doi.org/10.14042/j.cnki.32.1309.2013.04.006 (2013).

    Google Scholar 

  38. Zheng, Z. C., Zhang, X. Z., Li, T. X., Jin, W. & Lin, C. W. Variation characteristics and influencing factors of soil shear strength during maize growth period. Trans. Chin. Soc. Agric. Mach. 45 (05), 125–130. https://doi.org/10.6041/j.issn.1000-1298.2014.05.020 (2014).

    Google Scholar 

  39. Li, Y. R. Effects of particle shape and size distribution on the shear strength behavior of composite soil. Bull. Eng. Geol. Environ. 72, 371–381. https://doi.org/10.1007/s10064-013-0482-7 (2013).

    Google Scholar 

  40. Zheng, F. L. et al. Research focus on soil erosion characteristics and multi-force composite erosion of sloping farmland in black soil area of Northeast China. Bull. Soil. Water Conserv. 39 (04), 314–319. https://doi.org/10.13961/j.cnki.stbctb.2019.04.049 (2019).

    Google Scholar 

  41. Sun, X. W. et al. Study on the influence of low temperature and moisture content on the shear strength of remodeling coal. Min. Saf. Environ. Prot. 51 (2), 127–132. https://doi.org/10.19835/j.issn.1008-4495.20221084 (2024).

    Google Scholar 

  42. Li, B. et al. An experimental study of the relationship between water content and strength of unsaturated expansive soil on canal slope. Hydrogeol. Eng. Geol. 49 (5), 129–136. https://doi.org/10.16030/j.cnki.issn.1000-3665.202110049 (2022).

    Google Scholar 

  43. Wang, W. G., Wang, B., Gu, W. M., Chen, Z. M. & Jiang, Y. Y. Effects of freeze-thaw cycles on aggregate stability and microstructure characteristics of black soil. J. Soils Water Conserv. 36 (01), 66–73. https://doi.org/10.13870/j.cnki.stbcxb.2022.01.010 (2022).

    Google Scholar 

  44. Liu, H. X., Fan, H. M. & Xu, X. Q. Simulation study on vertical migration of water in black soil during freeze-thaw process. J. Soils Water Conserv. 35 (01), 169–173. https://doi.org/10.13870/j.cnki.stbcxb.2021.01.025 (2021).

    Google Scholar 

  45. Adeli, G. V. P. & Binal, A. Effects of repeated freeze-thaw cycles on physico-mechanical properties of cohesive soils. Arab. J. Geosci. 11, 1–13. https://doi.org/10.1007/s12517-018-3592-5 (2018).

    Google Scholar 

  46. Zhao, L. Q., Peng, J. B., Ma, P. H., Leng, Y. Q. & Ma, Z. Microstructure response to shear strength deterioration in loess after freeze-thaw cycles. Eng. Geol. 323, 107229. https://doi.org/10.1016/j.enggeo.2023.107229 (2023).

    Google Scholar 

  47. Zhou, J., Li, Z. Y. & Pei, W. S. The quantification and evolution of particle characteristics of saturated silt under freeze-thaw cycles. Appl. Sci. 12 (21), 10703. https://doi.org/10.3390/app122110703 (2022).

    Google Scholar 

  48. Zhang, Z., Ma, W., Feng, W. J., Xiao, D. H. & Hou, X. Reconstruction of soil particle composition during freeze-thaw cycling: A review. Pedosphere 26 (02), 167–179. https://doi.org/10.1016/s1002-0160(15)60033-9 (2016).

    Google Scholar 

  49. Liu, H. M. et al. Progressive freeze-thaw redistributes water, solute and CO2 emissions across soil layers—The role of soil particle size. Catena 219, 106614. https://doi.org/10.1016/J.CATENA.2022.106614 (2022).

    Google Scholar 

  50. Zhang, S. R., Xu, X., Dong, X. Q., Lei, H. M. & Sun, X. Effects of freeze-thaw cycles on the mechanical properties and microstructure of a dispersed soil. Appl. Sci. 13 (17), 9849. https://doi.org/10.3390/app13179849 (2023).

    Google Scholar 

  51. Zhang, J. L., Shi, D. M., Liu, Y., Ren, Y. H. & Pu, C. J. Effects of soil bulk density and water content on shear strength of plough layer in purple soil slope farmland. J. Soils Water Conserv. 34 (03), 162–167. https://doi.org/10.13870/j.cnki.stbcxb.2020.03.025 (2020).

    Google Scholar 

  52. Chen, Z. M., Liu, B. L., Li, N. & Li, J. P. Influences of freeze-thaw cycles on the shear characteristics of moraines in southeastern tibet and their improvement. J. Disaster Prev. Mitig. Eng. https://doi.org/10.13409/j.cnki.jdpme.20220928003 (2024).

    Google Scholar 

Download references

Acknowledgements

The work described in this paper was partly supported by the National Key Research and Development Program of China (2024YFD1501200) and the Inner Mongolia Autonomous Region Water Conservancy Science and Technology Project (202601010401A).

Funding

This study was supported by the National Key Research and Development Program of China (2024YFD1501200) and the Inner Mongolia Autonomous Region Water Conservancy Science and Technology Project (202601010401A).

Author information

Author notes
  1. Rongfei Zhao, Haohao Chang, Jincheng Yu, Donghao Huang, Defeng Yang, Huimin Yang and Lili Zhou contributed equally to this work.

Authors and Affiliations

  1. College of Water Conservancy, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China

    Rongfei Zhao, Haohao Chang, Jincheng Yu, Donghao Huang, Defeng Yang, Huimin Yang & Lili Zhou

  2. Liaoning Provincial Key Laboratory of Soil Erosion Prevention and Ecological Restoration, Shenyang, 110866, China

    Rongfei Zhao, Haohao Chang, Jincheng Yu, Donghao Huang, Defeng Yang, Huimin Yang & Lili Zhou

Authors
  1. Rongfei Zhao
    View author publications

    Search author on:PubMed Google Scholar

  2. Haohao Chang
    View author publications

    Search author on:PubMed Google Scholar

  3. Jincheng Yu
    View author publications

    Search author on:PubMed Google Scholar

  4. Donghao Huang
    View author publications

    Search author on:PubMed Google Scholar

  5. Defeng Yang
    View author publications

    Search author on:PubMed Google Scholar

  6. Huimin Yang
    View author publications

    Search author on:PubMed Google Scholar

  7. Lili Zhou
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Rongfei Zhao: Conceptualization, Methodology. Haohao Chang: Formal Analysis, Investigation, Writing - Original Draft. Jincheng Yu: Data Curation. Donghao Huang: Provide research resources. Defeng Yang: Project Administration. Huimin Yang: Visualization, Supervision. Lili Zhou: Writing- Reviewing and Editing.

Corresponding author

Correspondence to Lili Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Soil sampling permit statement

Soil samples were collected at Heshan Farm, Nenjiang City, Heilongjiang Province (core area of the black soil region in Northeast China). Prior to sampling, we obtained formal permission from the administrative authority of Heshan Farm. The sampling process complied with the Regulations on the Protection and Utilization of Black Soil in Heilongjiang Province and did not involve any illegal collection or use of black soil.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, R., Chang, H., Yu, J. et al. The influence of freeze-thaw action and particle size characteristics on the shear resistance of black soil. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36780-z

Download citation

  • Received: 01 October 2025

  • Accepted: 16 January 2026

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36780-z

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Freeze-thaw
  • Particle size
  • Shear strength
  • Typical black soil in northeast china
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene