Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Machine learning models for crude protein prediction in Tamani grass pastures
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 20 January 2026

Machine learning models for crude protein prediction in Tamani grass pastures

  • Gabriela Oliveira de Aquino Monteiro1,
  • Gelson dos Santos Difante2,
  • Denise Baptaglin Montagner3,
  • Valéria Pacheco Batista Euclides3,
  • Marina Castro4,
  • Jéssica Gomes Rodrigues2,
  • Marislayne de Gusmão Pereira2,
  • Juliana Caroline Santos Santana2,5,
  • Luis Carlos Vinhas Itavo2,
  • Rafael Torres Nantes6,
  • Jecelen Adriane Campos6,
  • Anderson Bessa da Costa6 &
  • …
  • Edson Takashi Matsubara6 

Scientific Reports , Article number:  (2026) Cite this article

  • 523 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Mathematics and computing
  • Plant sciences

Abstract

Understanding forage quality is essential for meeting animal demands and optimizing production. This study aimed to: (i) test the applicability of machine learning models with tabular data such as climate variables, light interception (LI), nitrogen dose (N dose), interval between grazing (GI), and pre- (HPRE) and post-grazing height (HPOST) to predict leaf crude protein (CP) content of tamani grass pastures; (ii) identify which variables contribute most to CP prediction. A set of 90 instances was used with 80% for training and validation and 20% for testing. The hyperparameters were adjusted with grid-search on the training set. We tested Linear Regression (LR), Multilayer Perceptron (MLP), Decision Trees (DT), Random Forest (RF), and XGBoost. The MLP (r = 0.75, R2 = 44.18%, MAE = 1.55), RF (r = 0.78, R2 = 49.07%, MAE = 1.59) and XGBoost (r = 0.78, R2 = 56.65% MAE = 1.45) models presented the best prediction results (p < 0.001). The variables most important in predicting CP content were GI, followed by N dose, HPRE and HPOST. XGBoost outperformed other tested models (p < 0.001). Tabular data, including N dose, GI, HPRE, HPOST, LI, and climatic variables, is a viable alternative for predicting CP. In conclusion, the results of this study suggest that management practices may have a greater influence on the chemical composition of Tamani grass than environmental conditions, although further research with larger and more diverse datasets is needed to confirm these findings. Link to the API: https://github.com/GabrielaAquino93/Project-BiomassCalculator.

Data availability

All data generated or analysed during this study are included in this published article.

References

  1. FAO. Land statistics 2001–2022. Global, regional and country trends. Food and Agriculture Organization of the United Nations. July 4, 2024. Avaiable: https://www.fao.org/statistics/highlights-archive/highlights-detail/land-statistics-2001-2022.-global--regional-and-country-trends/en

  2. Reinermann, S. et al. Remote sensing of grassland production and management—A review. Remote Sens. 12, 1949 (2020). https://doi.org/10.3390/rs12121949

  3. Wijesingha, J. et al. Predicting forage quality of grasslands using UAV-borne imaging spectroscopy. Remote Sens. 12, 126 (2020).https://doi.org/10.3390/rs12010126

    Google Scholar 

  4. Bretas, I. L. et al. Prediction of aboveground biomass and dry-matter content in brachiaria pastures by combining meteorological data and satellite imagery. Grass Forage Sci. 76, 340–352 (2021). https://doi.org/10.1111/gfs.12517

    Google Scholar 

  5. Balseca, D. G. et al. Nutritional value of brachiarias and forage legumes in the humid tropics of Ecuador. Cienc. Investig. Agrar. 42, 57–63 (2015). https://doi.org/10.4067/S0718-16202015000100006

    Google Scholar 

  6. Lopes, C. M. et al. Massa de forragem, composição morfológica e valor nutritivo de capim-braquiária Submetido a níveis de Sombreamento e fertilização. Arq. Bras. Med. Vet. Zootec. 69, 225–233 (2017). https://doi.org/10.1590/1678-4162-9201

    Google Scholar 

  7. Rouquette, F. M. Invited review: the roles of forage management, forage quality, and forage allowance in grazing. Prof. Anim. Sci. 32, 10–18 (2016). https://doi.org/10.15232/pas.2015-01408

    Google Scholar 

  8. Zubieta, A. S. et al. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Sci. Total Environ. 754, 142029 (2021). https://doi.org/10.1016/j.scitotenv.2020.142029

    Google Scholar 

  9. Horrocks, R. D. & Vallentine, J. F. Forage quality—the basics. in Harvested Forage 17–47 (Academic Press, 1999).

  10. t’Mannetje, L. & Jones, R. Field and Laboratory Methods for Grassland and Animal Production Research. (CABI Publishing, 2000).

  11. Gornott, C. & Wechsung, F. Statistical regression models for assessing climate impacts on crop yields: A validation study for winter wheat and silage maize in Germany. Agric. For. Meteorol. 217, 89–100 (2016). https://doi.org/10.1016/j.agrformet.2015.10.005

    Google Scholar 

  12. Jeong, J. H. et al. Random Forests for global and regional crop yield predictions. PLoS One 11, e0156571 (2016). https://doi.org/10.1371/journal.pone.0156571

  13. Le Maire, G. et al. MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass. Remote Sens. Environ. 115, 2613–2625 (2011). https://doi.org/10.1016/j.rse.2011.05.017

    Google Scholar 

  14. Freitas, E. C. S. et al. Modeling of Eucalyptus productivity with artificial neural networks. Ind. Crops Prod. 146, 112149 (2020). https://doi.org/10.1016/j.indcrop.2020.112149

    Google Scholar 

  15. Vahedi, A. A. Monitoring soil carbon pool in the hyrcanian coastal plain forest of iran: artificial neural network application in comparison with developing traditional models. Catena 152, 182–189 (2017). https://doi.org/10.1016/j.catena.2017.01.022

    Google Scholar 

  16. Vani, S. et al. Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling. Bioresour. Technol. 188, 128–135 (2015). https://doi.org/10.1016/j.biortech.2015.01.083

    Google Scholar 

  17. Da Silva, A. K. V. et al. Predicting Eucalyptus diameter at breast height and total height with UAV-based spectral indices and machine learning. Forests 12, 582 (2021). https://doi.org/10.3390/f12050582

    Google Scholar 

  18. Ramos, A. P. M. et al. A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Comput. Electron. Agric. 178, 105791 (2020). https://doi.org/10.1016/j.compag.2020.105791

    Google Scholar 

  19. Mwendia, S. W. et al. Does harvesting Urochloa and Megathyrsus forages at short intervals confer an advantage on cumulative dry matter yields and quality? J. Sci. Food Agric. 102, 750–756 (2022). https://doi.org/10.1002/jsfa.11407

    Google Scholar 

  20. Reis, A. A. et al. Monitoring pasture aboveground biomass and canopy height in an integrated crop–livestock system using textural information from planetscope imagery. Remote Sens. 12, 2534 (2020). https://doi.org/10.3390/rs12162534

    Google Scholar 

  21. Rosa, D. et al. Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imagery. Comput. Electron. Agric. 180, 105880 (2021). https://doi.org/10.1016/j.compag.2020.105880

    Google Scholar 

  22. Solos, E. Sistema Brasileiro De classificação De Solos. 3ª ed. (Centro Nacional de Pesquisa de Solos, Rio de Janeiro, 2018).

    Google Scholar 

  23. De Campos, R. L. C., De Oliveira, R. H. M., Macedo, M., & Gomes, R. D. C. Predicting the nutritional value of tropical forages by Near Infrared Reflectance Spectroscopy (NIRS) (2024).

  24. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  25. Štepanovský, M. et al. Novel age Estimation model based on development of permanent teeth compared with classical approach and other modern data mining methods. Forensic Sci. Int. 279, 72–82 (2017). https://doi.org/10.1016/j.forsciint.2017.08.005

    Google Scholar 

  26. Raj, P. & Evangeline, P. The Digital Twin Paradigm for Smarter Systems and Environments: the Industry Use Cases. (Academic Press, 2020).

  27. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

  28. Saha, S. et al. Predicting the deforestation probability using the binary logistic regression, random forest, ensemble rotational forest, reptree: A case study at the Gumani river Basin, India. Sci. Total Environ. 730, 139197 (2020). https://doi.org/10.1016/j.scitotenv.2020.139197

    Google Scholar 

  29. Bisong, E. et al. Building machine learning and deep learning models on Google Cloud Platform. (Apress, 2019).

  30. Moore, David S. & Mccabe, George. Introduction to the practice of statistics. New York, Freeman (2004).

  31. Nabinger, C. Eficiência do Uso de pastagens: disponibilidade e Perdas de forragem. in Simpósio Sobre Manejo Da Pastagem 213–251 (1997).

  32. Carnevalli, R. A. et al. Herbage production and grazing losses in panicum maximum cv. Mombaça under four grazing managements. Trop. Grassl. 40, 165–171 (2006).

    Google Scholar 

  33. Pedreira, B. C., Pedreira, C. G. S. & Silva, S. C. Acúmulo de forragem Durante a rebrotação de capim-xaraés Submetido a três estratégias de desfolhação. Rev. Bras. Zootec. 38, 618–625 (2009).

    Google Scholar 

  34. Costa, N. L. et al. Resposta de Pastagens de Megathyrsus Maximus cv. Zuri à frequência de desfolhação. Res. Soc. Dev. 8, e1185 (2019).

    Google Scholar 

  35. Geremia, E. V. et al. Sward structure and herbage intake of brachiaria Brizantha cv. Piatã in a crop-livestock-forestry integration area. Livest. Sci. 212, 83–92 (2018). https://doi.org/10.1016/j.livsci.2018.03.020

    Google Scholar 

  36. Hodgson, J. Grazing Management: Science into Practice. (Longman Group UK Ltd., 1990).

  37. Taiz, L. et al. Fisiologia E Desenvolvimento Vegetal: Diversidade Vegetal. (Artmed, 2017).

  38. Delevatti, L. M. et al. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Sci. Rep. 9, 7596 (2019). https://doi.org/10.1038/s41598-019-44138-x

    Google Scholar 

  39. Paciullo, D. S. C. et al. Morphogenesis, biomass and nutritive value of panicum maximum under different shade levels and fertilizer nitrogen rates. Grass Forage Sci. 72, 590–600 (2017). https://doi.org/10.1111/gfs.12264

    Google Scholar 

  40. Bretas, I. L. et al. Canopy height and biomass prediction in Mombaça Guinea grass pastures using satellite imagery and machine learning. Precis. Agric. 1–25 (2023). https://doi.org/10.1007/s11119-023-10013-z

  41. Kamilaris, A. & Prenafeta-Boldú, F. X. Deep learning in agriculture: A survey. Comput. Electron. Agric. 147, 70–90 (2018). https://doi.org/10.1016/j.compag.2018.02.016

    Google Scholar 

  42. Lu, D. & Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 28, 823–870 (2007). https://doi.org/10.1080/01431160600746456

    Google Scholar 

  43. Doshi-Velez, F. & Kim, B. Towards a rigorous science of interpretable machine learning. ArXiv Preprint arXiv:1702.08608 (2017).

  44. Cunha, A. M. Q. et al. Nitrogen fertilisation as a strategy for intensifying production and improving the quality of Massai grass grown in a humid tropical climate. J. Plant Nutr. 45, 2213–2227 (2022). https://doi.org/10.1080/01904167.2022.2046078

    Google Scholar 

  45. Galindo, F. S. et al. Technical and economic viability and nutritional quality of Mombasa Guinea grass silage production. Acta Sci. Agron. 40, e36395 (2018). https://doi.org/10.4025/actasciagron.v40i1.36395

  46. Li, P. et al. Elevated carbon dioxide and nitrogen supply affect photosynthesis and nitrogen partitioning of two wheat varieties. J. Plant Nutr. 42, 1290–1300 (2019). https://doi.org/10.1080/01904167.2019.1616758

    Google Scholar 

  47. Zanine, A. et al. Effect of season and nitrogen fertilization on the agronomic traits and efficiency of Piatã grass in Brazilian savanna. Agriculture 10, 337 (2020). https://doi.org/10.3390/agriculture10080337

    Google Scholar 

  48. Alvarenga, C. A. F. et al. Animal performance and Sward characteristics of Mombaça guineagrass pastures subjected to two grazing frequencies. Trop. Grassl. Forrajes Trop. 8, 1–10 (2020). https://doi.org/10.17138/tgft(8)1-10

    Google Scholar 

  49. Da Silva, S. C., Sbrissia, A. F. & Pereira, L. E. T. Ecophysiology of C4 forage grasses—understanding plant growth for optimizing their use and management. Agriculture 5, 598–625 (2015).

    Google Scholar 

  50. Van Soest, P. J. Nutritional Ecology of the Ruminant. (Cornell University Press, 1994).

  51. Gillet, M. Las gramíneas Forrajeras: Descripción, funcionamiento, Aplicaciones Al Cultivo De La Hierba. (Acribia, 1984).

  52. Reis, R. A., Bernardes, T. F. & Siqueira, G. R. Forragicultura: Ciência, Tecnologia E gestão Dos Recursos Forrageiros. (Gráfica Multipress, 2013).

  53. Chen, Y. et al. Estimating pasture biomass using Sentinel-2 imagery and machine learning. Remote Sensing 13, 603 (2021). https://doi.org/10.3390/rs13040603

    Google Scholar 

  54. Tesk, C. R. M. et al. Impact of grazing management on forage qualitative characteristics: A review. Sci. Electron. Arch. 11, 188–197 (2018).

    Google Scholar 

  55. Bretas, I. L., Dubeux Jr, J. C., Cruz, P. J., Oduor, K. T., Queiroz, L. D., Valente, D. S., & Chizzotti, F. H. Precision livestock farming applied to grazingland monitoring and management—a review. Agron. J. 116, 1164–1186 (2024). https://doi.org/10.1002/agj2.21346

    Google Scholar 

  56. Murphy, D. J., Murphy, M. D., O’Brien, B., & O’Donovan, M. A. Review of precision technologies for optimising pasture measurement on Irish grassland. Agriculture 11, 600 (2021). https://doi.org/10.3390/agriculture11120600

    Google Scholar 

Download references

Acknowledgements

AcknowledgementsThe authors thank the Embrapa Beef Cattle, Federal University of Mato Grosso do Sul Foundation, through the Postgraduate Program in Animal Science, the National Council for Scientific and Technological Development (CNPq), the Higher Education Personnel Improvement Coordination (CAPES, Finance Code 001) and the Foundation for the Support of the Development of Education, Science and Technology of the State of Mato Grosso do Sul (FUNDECT).

Funding

The authors received no funding for this work.

Author information

Authors and Affiliations

  1. Departament of Animal Science, São Paulo State University “Júlio de Mesquita Filho”, JABOTICABAL, Brasil

    Gabriela Oliveira de Aquino Monteiro

  2. Department of Animal Science, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, 79070-900, Brazil

    Gelson dos Santos Difante, Jéssica Gomes Rodrigues, Marislayne de Gusmão Pereira, Juliana Caroline Santos Santana & Luis Carlos Vinhas Itavo

  3. Embrapa Beef Cattle, Campo Grande, MS, 79106-550, Brazil

    Denise Baptaglin Montagner & Valéria Pacheco Batista Euclides

  4. CIMO, LA SusTEC, Polytechnic Institute of Bragança, Alameda de St Apolónia, Bragança, 5300-253, Portugal

    Marina Castro

  5. Graduate Program in Animal Production, Federal University of Rio Grande do Norte, Macaiba, Brasil

    Juliana Caroline Santos Santana

  6. Department of Computer, Federal University of Mato Grosso do Sul (UFMS), Campo Grande, MS, 79070-900, Brazil

    Rafael Torres Nantes, Jecelen Adriane Campos, Anderson Bessa da Costa & Edson Takashi Matsubara

Authors
  1. Gabriela Oliveira de Aquino Monteiro
    View author publications

    Search author on:PubMed Google Scholar

  2. Gelson dos Santos Difante
    View author publications

    Search author on:PubMed Google Scholar

  3. Denise Baptaglin Montagner
    View author publications

    Search author on:PubMed Google Scholar

  4. Valéria Pacheco Batista Euclides
    View author publications

    Search author on:PubMed Google Scholar

  5. Marina Castro
    View author publications

    Search author on:PubMed Google Scholar

  6. Jéssica Gomes Rodrigues
    View author publications

    Search author on:PubMed Google Scholar

  7. Marislayne de Gusmão Pereira
    View author publications

    Search author on:PubMed Google Scholar

  8. Juliana Caroline Santos Santana
    View author publications

    Search author on:PubMed Google Scholar

  9. Luis Carlos Vinhas Itavo
    View author publications

    Search author on:PubMed Google Scholar

  10. Rafael Torres Nantes
    View author publications

    Search author on:PubMed Google Scholar

  11. Jecelen Adriane Campos
    View author publications

    Search author on:PubMed Google Scholar

  12. Anderson Bessa da Costa
    View author publications

    Search author on:PubMed Google Scholar

  13. Edson Takashi Matsubara
    View author publications

    Search author on:PubMed Google Scholar

Contributions

G.O.A.M., G.S.D., E.T.M., D.B.M. and V.P.B.E., designed the study. G.O.A.M., J.G.R., M.G.P., J.C.S.S., R.T.N. and J.A.C. performed the experiment and collected data. G.O.A.M., R.T.N., J.A.C., A.B.C., L.C.V.I. and M.M.P.M.F.C. analyzed the data. G.O.A.M. conducted statistical analysis and wrote the manuscript. All authors read and critically revised drafts for intellectual content and provided approval for publication.

Corresponding author

Correspondence to Gabriela Oliveira de Aquino Monteiro.

Ethics declarations

Competing interests

The authors declare no competing interests.

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira de Aquino Monteiro, G., dos Santos Difante, G., Baptaglin Montagner, D. et al. Machine learning models for crude protein prediction in Tamani grass pastures. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36949-6

Download citation

  • Received: 13 May 2025

  • Accepted: 19 January 2026

  • Published: 20 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36949-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Machine learning
  • Panicum maximum
  • Pasture management
  • Precision livestock farming
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics