Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
MCI-LB brain networks reorganization in relation to specific cognitive domains deficits
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 21 January 2026

MCI-LB brain networks reorganization in relation to specific cognitive domains deficits

  • Valeria Onofrj1,2,
  • Raffaella Franciotti3,4,
  • Kristina Mitterova5,
  • Lubos Brabenec5,
  • Martin Gajdos5,
  • Ivona Moravkova2,5,
  • Antonio Ferretti3,4,
  • Sara Spadone6,
  • Caterina Padulo7,
  • Antonello Baldassarre3,
  • Stefano L. Sensi3,8 &
  • …
  • Irena Rektorova5,9 

Scientific Reports , Article number:  (2026) Cite this article

  • 442 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Neurology
  • Neuroscience

Abstract

To tackle the disease-related process in early pre-dementia Lewy Body Dementia, we investigated the changes of functional brain networks and their cognitive relevance. A cohort of 38 Mild Cognitive Impairment with Lewy Bodies (MCI-LB) subjects and one of 24 healthy controls (HC) underwent neuropsychological assessment and resting state (RS) functional and structural MRI. Functional connectivity (FC) between ROIs belonging to a set of RS networks, including the Salience Network (SN), Fronto-Parietal (FPN), Default Mode (DMN), Dorsal and Ventral Attention (DAN and VAN), Somato-Motor (SMN), Visual (VN) and Language (LN) was estimated and compared between cohorts. Finally, neuropsychological scores were correlated with FC of MCI-LB and HC separately. Compared to HC, MCI-LB exhibited lower FC between DAN, FPN and LN. Higher inter-network FC was found between FPN and SN, FPN and DMN, SN and SMN and DAN and SMN. In MCI-LB the correlational analysis revealed significant positive and negative associations between cognitive performance and FC values between nodes. In conclusion, we found a possible compensation mechanism between nodes in SN and FPN, and FPN and DMN following disconnection between the control system of the FPN and the top down attention system. The complex compensatory mechanisms involving multiple networks may not be efficient to counteract the cognitive impairment in MCI-LB. Overall, in MCI-LB we found an aberrant engagement of the networks that are not primarily involved in the performance of specific tasks.

Similar content being viewed by others

Interactions between functional networks in Parkinson's disease mild cognitive impairment

Article Open access 17 November 2023

Network-wide aberrancies in neuronal activity during working memory in a large cohort of patients with mood disorders: associations with cognitive impairment and functional disability

Article Open access 17 June 2025

Dynamic network impairments underlie cognitive fluctuations in Lewy body dementia

Article Open access 17 February 2022

Data availability

All relevant raw data will be available upon request to any researcher wishing to use them for non-commercial purposes, for privacy reasons.For access to the raw data, please contact Prof. Irena Rektorova at irena.rektorova@fnusa.cz.

References

  1. Donaghy, P. C. et al. Research diagnostic criteria for mild cognitive impairment with lewy bodies: A systematic review and meta-analysis. Alzheimers Dement. 19 (7), 3186–3202 (2023).

    Google Scholar 

  2. McKeith, I. G. et al. Research criteria for the diagnosis of prodromal dementia with lewy bodies. Neurol. 28 Avr. 94 (17), 743–755 (2020).

    Google Scholar 

  3. Iranzo, A. et al. Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: a longitudinal observational study. Lancet Neurol. Mars. 20 (3), 203–212 (2021).

    Google Scholar 

  4. Yau, Y. et al. Network connectivity determines cortical thinning in early parkinson’s disease progression. Nat. Commun. 2 Janv. 9 (1), 12 (2018).

    Google Scholar 

  5. Rahayel, S. et al. Differentially targeted seeding reveals unique pathological alpha-synuclein propagation patterns. Brain J. Neurol. 3 Juin. 145 (5), 1743–1756 (2022).

    Google Scholar 

  6. McKeith, I. G. et al. Diagnosis and management of dementia with lewy bodies: fourth consensus report of the DLB consortium. Neurol. 4 Juill. 89 (1), 88–100 (2017).

    Google Scholar 

  7. Ferman, T. J. et al. Nonamnestic mild cognitive impairment progresses to dementia with lewy bodies. Neurol. 3 déc. 81 (23), 2032–2038 (2013).

    Google Scholar 

  8. Ferman, T. J. et al. Neuropsychological differentiation of dementia with lewy bodies from normal aging and alzheimer’s disease. Clin. Neuropsychol. déc. 20 (4), 623–636 (2006).

    Google Scholar 

  9. Ciafone, J., Little, B., Thomas, A. J. & Gallagher, P. The neuropsychological profile of mild cognitive impairment in lewy body dementias. J. Int. Neuropsychol. Soc. févr. 26 (2), 210–225 (2020).

    Google Scholar 

  10. Lowther, E. R., O’Brien, J. T., Firbank, M. J. & Blamire, A. M. Lewy body compared with alzheimer dementia is associated with decreased functional connectivity in resting state networks. Psychiatry Res. 30 Sept. 223 (3), 192–201 (2014).

    Google Scholar 

  11. Schumacher, J. et al. Functional connectivity in dementia with lewy bodies: A within- and between-network analysis. Hum. Brain Mapp. Mars. 39 (3), 1118–1129 (2018).

    Google Scholar 

  12. Schumacher, J. et al. Functional connectivity in mild cognitive impairment with lewy bodies. J. Neurol. déc. 268 (12), 4707–4720 (2021).

    Google Scholar 

  13. Peraza, L. R. et al. fMRI resting state networks and their association with cognitive fluctuations in dementia with lewy bodies. NeuroImage Clin. 28 Mars. 4, 558–565 (2014).

    Google Scholar 

  14. Kenny, E. R., Blamire, A. M., Firbank, M. J. & O’Brien, J. T. Functional connectivity in cortical regions in dementia with lewy bodies and alzheimer’s disease. Brain févr. 135 (2), 569–581 (2012).

    Google Scholar 

  15. Franciotti, R. et al. Default network is not hypoactive in dementia with fluctuating cognition: an alzheimer disease/dementia with lewy bodies comparison. Neurobiol. Aging Avr. 34 (4), 1148–1158 (2013).

    Google Scholar 

  16. Menon, V. & Uddin, L. Q. Saliency, switching, attention and control: a network model of Insula function. Brain Struct. Funct. Juin. 214 (5–6), 655–667 (2010).

    Google Scholar 

  17. Crottaz-Herbette, S. & Menon, V. Where and when the anterior cingulate cortex modulates attentional response: combined fMRI and ERP evidence. J. Cogn. Neurosci. Mai. 18 (5), 766–780 (2006).

    Google Scholar 

  18. Kobeleva, X. et al. Divergent functional connectivity during attentional processing in lewy body dementia and alzheimer’s disease. Cortex J. Devoted Study Nerv. Syst. Behav. Juill. 92, 8–18 (2017).

    Google Scholar 

  19. Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. Mars. 3 (3), 201–215 (2002).

    Google Scholar 

  20. Alves, P. N., Forkel, S. J., Corbetta, M. & Thiebaut de Schotten, M. The subcortical and neurochemical organization of the ventral and dorsal attention networks. Commun. Biol. 7 déc. 5 (1), 1–14 (2022).

    Google Scholar 

  21. Habich, A., Wahlund, L. O., Westman, E., Dierks, T. & Ferreira, D. Dis-)Connected Dots in dementia with lewy Bodies—A systematic review of connectivity studies. Mov. Disord. 38 (1), 4–15 (2023).

    Google Scholar 

  22. Mehraram, R. et al. Functional and structural brain network correlates of visual hallucinations in lewy body dementia. Brain 9 Mars. 145 (6), 2190–2205 (2022).

    Google Scholar 

  23. Han, S. W., Eaton, H. P. & Marois, R. Functional fractionation of the Cingulo-opercular network: alerting Insula and updating cingulate. Cereb. Cortex 1 Juin. 29 (6), 2624–2638 (2019).

    Google Scholar 

  24. Roquet, D. et al. Insular atrophy at the prodromal stage of dementia with lewy bodies: a VBM DARTEL study. Sci. Rep. 25 août. 7, 9437 (2017).

    Google Scholar 

  25. Goulden, N. et al. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. NeuroImage 1 oct. 99, 180–190 (2014).

    Google Scholar 

  26. Shine, J. M. et al. The role of dysfunctional attentional control networks in visual misperceptions in parkinson’s disease. Hum. Brain Mapp. Mai. 35 (5), 2206–2219 (2014).

    Google Scholar 

  27. Litvan, I. et al. Diagnostic criteria for mild cognitive impairment in parkinson’s disease: movement disorder society task force guidelines. Mov. Disord Off J. Mov. Disord Soc. Mars. 27 (3), 349–356 (2012).

    Google Scholar 

  28. Železníková, Ž. et al. Early changes in the locus coeruleus in mild cognitive impairment with lewy bodies. Mov. Disord Off J. Mov. Disord Soc. févr. 40 (2), 276–284 (2025).

    Google Scholar 

  29. Nasreddine, Z. S. et al. The Montreal cognitive Assessment, moca: a brief screening tool for mild cognitive impairment. J. Am. Geriatr. Soc. Avr. 53 (4), 695–699 (2005).

    Google Scholar 

  30. Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The unified parkinson’s disease rating scale (UPDRS): status and recommendations. Mov. Disord Off J. Mov. Disord Soc. Juill. 18 (7), 738–750 (2003).

    Google Scholar 

  31. Ferman, T. J. et al. DLB fluctuations: specific features that reliably differentiate DLB from AD and normal aging. Neurol. 27 Janv. 62 (2), 181–187 (2004).

    Google Scholar 

  32. Yesavage, J. A. et al. Development and validation of a geriatric depression screening scale: a preliminary report. J. Psychiatr Res. 1983. 17 (1), 37–49 (1982).

    Google Scholar 

  33. Stiasny-Kolster, K. et al. The REM sleep behavior disorder screening questionnaire–a new diagnostic instrument. Mov. Disord Off J. Mov. Disord Soc. déc. 22 (16), 2386–2393 (2007).

    Google Scholar 

  34. Cummings, J. L. et al. The neuropsychiatric inventory: comprehensive assessment of psychopathology in dementia. Neurol. déc. 44 (12), 2308–2314 (1994).

    Google Scholar 

  35. Johns, M. W. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. déc. 14 (6), 540–545 (1991).

    Google Scholar 

  36. Benedict, R. H. B. Brief Visuospatial Memory Test Revised Professional Manual. Odessa, FL Psychological Assessment Resources. - References - Scientific Research Publishing [Internet]. [cité 7 déc 2025]. Disponible sur: (1997). https://www.scirp.org/reference/referencespapers?referenceid=1738365

  37. Bezdicek, O. et al. Development, validity, and normative data study for the 12-word Philadelphia verbal learning test [czP(r)VLT-12] among older and very old Czech adults. Clin. Neuropsychol. 28 (7), 1162–1181 (2014).

    Google Scholar 

  38. Taub, G. E., McGrew, K. S. & Witta, E. L. A confirmatory analysis of the factor structure and cross-age invariance of the Wechsler adult intelligence Scale-Third edition. Psychol. Assess. Mars. 16 (1), 85–89 (2004).

    Google Scholar 

  39. Nikolai, T. et al. Tests of verbal Fluency, Czech normative study in older patients. Čes Slov. Neurol. Neurochir. 29 Mai. 78/111, 292–299 (2015).

    Google Scholar 

  40. Moeller, S. et al. Multiband Multislice GE-EPI at 7 Tesla, With 16-Fold Acceleration Using Partial Parallel Imaging With Application to High Spatial and Temporal Whole-Brain FMRI. Magn Reson Med Off J Soc Magn Reson Med Soc Magn Reson Med. mai. 63 (5):1144–53. (2010).

  41. Feinberg, D. A. et al. Multiplexed echo planar imaging for Sub-Second whole brain FMRI and fast diffusion imaging. PLOS ONE Dic. 5 (12), e15710 (2010).

    Google Scholar 

  42. Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2 (3), 125–141 (2012).

    Google Scholar 

  43. Friston, K. J. et al. Analysis of fMRI time-series revisited. NeuroImage Mars. 2 (1), 45–53 (1995).

    Google Scholar 

  44. Spadone, S. et al. Dynamic brain States in Spatial neglect after stroke. Front Syst Neurosci [Internet]. 2 mai 2023 [cité 7 déc 2025];17. Disponible sur: https://www.frontiersin.org/journals/systems-neuroscience/articles/https://doi.org/10.3389/fnsys.2023.1163147/full

  45. Baldassarre, A., Filardi, M. S., Spadone, S., Penna, S. D. & Committeri, G. Distinct connectivity profiles predict different in-time processes of motor skill learning. NeuroImage 1 Sept. 238, 118239 (2021).

    Google Scholar 

  46. Marek, S. & Dosenbach, N. U. F. The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues Clin. Neurosci. Juin. 20 (2), 133–140 (2018).

    Google Scholar 

  47. Spadone, S. et al. Dynamic brain States in Spatial neglect after stroke. Front. Syst. Neurosci. [Internet]. https://doi.org/10.3389/fnsys.2023.1163147 (2023). [cité 18 juill 2023];17. Disponible sur: https://www.frontiersin.org/articles/

    Google Scholar 

  48. Xia, M., Wang, J. & He, Y. BrainNet viewer: A network visualization tool for human brain connectomics. PLOS ONE 4 Juill. 8 (7), e68910 (2013).

    Google Scholar 

  49. Ahrens, M. M., Veniero, D., Freund, I. M., Harvey, M. & Thut, G. Both dorsal and ventral attention network nodes are implicated in exogenously driven visuospatial anticipation. Cortex J. Devoted Study Nerv. Syst. Behav. août. 117, 168–181 (2019).

    Google Scholar 

  50. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc Natl Acad Sci. 7 janv. ;100(1):253–8. (2003).

  51. Chabran, E. et al. Changes in gray matter volume and functional connectivity in dementia with Lewy bodies compared to Alzheimer’s disease and normal aging: implications for fluctuations. Alzheimers Res Ther. 6 janv. ;12(1):9. (2020).

  52. Sadaghiani, S. & D’Esposito, M. sept. Functional characterization of the Cingulo-Opercular network in the maintenance of tonic Alertness. Cereb cortex. 25(9):2763–2773. (2015).

  53. Katsuki, F. & Constantinidis, C. Bottom-up and top-down attention: different processes and overlapping neural systems. Neurosci. Rev. J. Bringing Neurobiol. Neurol. Psychiatry oct. 20 (5), 509–521 (2014).

    Google Scholar 

  54. Chen, W., Liang, J., Wu, Q. & Han, Y. Anterior cingulate cortex provides the neural substrates for feedback-driven iteration of decision and value representation. Nat. Commun. 17 Juill. 15 (1), 6020 (2024).

    Google Scholar 

  55. Habich, A. et al. Grey matter networks in women and men with dementia with lewy bodies. Npj Park Dis. 13 Avr. 10 (1), 84 (2024).

    Google Scholar 

  56. Tang, S. et al. Large-scale network dysfunction in α-Synucleinopathy: A meta-analysis of resting-state functional connectivity. eBioMedicine [Internet]. 1 mars 2022 [cité 23 sept 2025];77. Disponible sur: https://www.thelancet.com/journals/ebiom/article/PIIS2352-3964(22)00099-8/fulltext

  57. Kucikova, L. et al. A systematic literature review of fMRI and EEG resting-state functional connectivity in dementia with lewy bodies: underlying mechanisms, clinical manifestation, and methodological considerations. Ageing Res. Rev. Janv. 93, 102159 (2024).

    Google Scholar 

  58. Liu, L. et al. oct. The two-brain approach reveals the active role of task-deactivated default mode network in speech comprehension. Cereb cortex. 32(21):4869–4884. (2022).

  59. Ren, Z. et al. The Different Brain Mechanisms of Object and Spatial Working Memory: Voxel-Based Morphometry and Resting-State Functional Connectivity. Front Hum Neurosci [Internet]. 19 juill 2019 [cité 1 mars 2025];13. Disponible sur: https://www.frontiersin.org/journals/human-neuroscience/articles/https://doi.org/10.3389/fnhum.2019.00248/full

  60. Delli Pizzi, S. et al. Relevance of subcortical visual pathways disruption to visual symptoms in dementia with lewy bodies. Cortex 1 oct. 59, 12–21 (2014).

    Google Scholar 

  61. Reineberg, A. E., Andrews-Hanna, J. R., Depue, B. E., Friedman, N. P. & Banich, M. T. Resting-state networks predict individual differences in common and specific aspects of executive function. NeuroImage 1 Janv. 104, 69–78 (2015).

    Google Scholar 

  62. Reineberg, A. E., Gustavson, D. E., Benca, C., Banich, M. T. & Friedman, N. P. The relationship between resting state network connectivity and individual differences in executive functions. Front. Psychol. 5 Sept. 9, 1600 (2018).

    Google Scholar 

  63. Zhao, J. et al. Age-Related Decreases in Interhemispheric Resting-State Functional Connectivity and Their Relationship With Executive Function. Front Aging Neurosci [Internet]. 26 févr 2020 [cité 10 juin 2024];12. Disponible sur: https://www.frontiersin.org/articles/https://doi.org/10.3389/fnagi.2020.00020

  64. Ye, Z. & Zhou, X. Executive control in Language processing. Neurosci. Biobehav Rev. 1 Sept. 33 (8), 1168–1177 (2009).

    Google Scholar 

  65. Hyde, J. S. & Linn, M. C. Gender differences in verbal ability: A meta-analysis. Psychol. Bull. 104 (1), 53–69 (1988).

    Google Scholar 

  66. Yeager, B. E., Twedt, H. P., Bruss, J., Schultz, J. & Narayanan, N. S. Cortical and subcortical functional connectivity and cognitive impairment in parkinson’s disease. NeuroImage Clin. 42, 103610 (2024).

    Google Scholar 

  67. Majerus, S. et al. Attention supports verbal short-term memory via competition between dorsal and ventral attention networks. Cereb Cortex N Y N 1991. mai. ;22(5):1086–97. (2012).

  68. Jones, S. D. & Westermann, G. Under-Resourced or overloaded? Rethinking working memory deficits in developmental Language disorder. Psychol. Rev. Nov. 129 (6), 1358–1372 (2022).

    Google Scholar 

  69. Majerus, S. et al. The commonality of neural networks for verbal and visual short-term memory. J. Cogn. Neurosci. Nov. 22 (11), 2570–2593 (2010).

    Google Scholar 

  70. Clark, V. P., Fannon, S., Lai, S., Benson, R. & Bauer, L. Responses to rare visual target and distractor stimuli using Event-Related fMRI. J. Neurophysiol. Mai. 83 (5), 3133–3139 (2000).

    Google Scholar 

  71. Bartolomeo, P., Thiebaut De Schotten, M. & Chica, A. B. Brain networks of visuospatial attention and their disruption in visual neglect. Front Hum Neurosci [Internet]. 4 mai 2012 [cité 23 sept 2025];6. Disponible sur: https://www.frontiersin.org/journals/human-neuroscience/articles/https://doi.org/10.3389/fnhum.2012.00110/full

  72. Birn, R. M. et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. NeuroImage déc. 83, 550–558 (2013).

    Google Scholar 

Download references

Funding

The work was supported by the Ministry of Health of the Czech Republic (grant NU21J-04-00077) and by an EU Joint Program-Neurodegenerative Disease (JPND) project entitled: TACKLing the challenges of PREsymptomatic sporadic Dementia (TACKL-PRED), project no. 8F22005. We acknowledge the core facility MAFIL, supported by the Czech-BioImaging large RI project (LM2023050 funded by MEYS CR), part of the Euro-BioImaging (www.eurobioimaging.eu) ALM and Medical Imaging Node (Brno, CZ), for their support with obtaining scientific data presented in this paper. Supported by project no. LX22NPO5107 (MEYS): Funded by the European Union – Next Generation EU.

Author information

Authors and Affiliations

  1. Department of Clinical Imaging Hôpital Erasme, Université Libre de Bruxelles, Hôpital Universitaire des Enfants Reine Fabiola, Route de Lennik 808, Avenue Jean-Joseph Crocq 15, Bruxelles, Bruxelles, 1070, 1020, Belgium

    Valeria Onofrj

  2. Faculty of Medicine, Masaryk University, Brno, Czech Republic

    Valeria Onofrj & Ivona Moravkova

  3. Department of Neuroscience, Imaging and Clinical Sciences, Institute for Advanced Biomedical Technologies, G. d’Annunzio University of Chieti-Pescara, Chieti, Italy

    Raffaella Franciotti, Antonio Ferretti, Antonello Baldassarre & Stefano L. Sensi

  4. Research Center, UdA-TechLab, University ’’G. d’Annunzio’’ of Chieti-Pescara, Chieti, Italy

    Raffaella Franciotti & Antonio Ferretti

  5. Neuroscience Programme, Central European Institute of Technology, CEITEC, Masaryk University, Brno, Czech Republic

    Kristina Mitterova, Lubos Brabenec, Martin Gajdos, Ivona Moravkova & Irena Rektorova

  6. UniCamillus-Saint Camillus International University of Health Sciences, Rome, Italy

    Sara Spadone

  7. Department of Humanities, University of Naples, Federico II, Naples, Italy

    Caterina Padulo

  8. Center for Advanced Studies and Technology – CAST, G. d’Annunzio University of Chieti-Pescara, Institute of Neurology, SS Annunziata University Hospital, Chieti, University of Chieti-Pescara, Chieti, Italy

    Stefano L. Sensi

  9. First Department of Neurology, Faculty of Medicine, St. Anne’s University Hospital, Masaryk University, Brno, Czech Republic

    Irena Rektorova

Authors
  1. Valeria Onofrj
    View author publications

    Search author on:PubMed Google Scholar

  2. Raffaella Franciotti
    View author publications

    Search author on:PubMed Google Scholar

  3. Kristina Mitterova
    View author publications

    Search author on:PubMed Google Scholar

  4. Lubos Brabenec
    View author publications

    Search author on:PubMed Google Scholar

  5. Martin Gajdos
    View author publications

    Search author on:PubMed Google Scholar

  6. Ivona Moravkova
    View author publications

    Search author on:PubMed Google Scholar

  7. Antonio Ferretti
    View author publications

    Search author on:PubMed Google Scholar

  8. Sara Spadone
    View author publications

    Search author on:PubMed Google Scholar

  9. Caterina Padulo
    View author publications

    Search author on:PubMed Google Scholar

  10. Antonello Baldassarre
    View author publications

    Search author on:PubMed Google Scholar

  11. Stefano L. Sensi
    View author publications

    Search author on:PubMed Google Scholar

  12. Irena Rektorova
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Valeria Onofrj (1ABC, 2 C, 3 A), Raffaella Franciotti (1AC, 2AC, 3B), Kristina Mitterova (1 C, 2 C, 3B), Lubos Brabenec (1 C, 2 C, 3B), Martin Gajdos (1B, 2 C, 3B), Ivona Moravkova (1 C, 2 C, 3B), Antonio Ferretti (1 C, 2 C, 3B), Sara Spadone (1 C, 2AB, 3B), Caterina Padulo (1 C, 2 C), Antonello Baldassarre (1 C, 2AB, 3B), Stefano Sensi (1 C, 2 C, 3B), Irena Rektorova (1AB, 2AC, 3B).

Corresponding author

Correspondence to Valeria Onofrj.

Ethics declarations

Competing interests

The authors declare no competing interests.

Authors roles

1) Research project: (A) Conception, (B) Organization, (C) Execution; 2) Statistical analysis: A.

Design, B. Execution, C. Review and Critique; 3) Manuscript: A. Writing of the first draft, B.

Review and Critique.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onofrj, V., Franciotti, R., Mitterova, K. et al. MCI-LB brain networks reorganization in relation to specific cognitive domains deficits. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36953-w

Download citation

  • Received: 10 May 2025

  • Accepted: 19 January 2026

  • Published: 21 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36953-w

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Functional magnetic resonance imaging (fMRI)
  • Mild cognitive impairment with lewy bodies (MCI-LB)
  • Resting state functional connectivity
  • Large-scale brain networks
Download PDF

Associated content

Collection

Functional connectivity of the brain

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing