Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Real-world performance of the AI diagnostic system IDx-DR in the diagnosis of diabetic retinopathy and its main confounders
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 January 2026

Real-world performance of the AI diagnostic system IDx-DR in the diagnosis of diabetic retinopathy and its main confounders

  • Elisabeth Hunfeld1,
  • Allam Tayar1,
  • Sebastian Paul1,
  • Broder Poschkamp1,
  • Rico Großjohann1,
  • Eva Morawiec-Kisiel1,
  • Beathe Bohl1,
  • Johanna M. Pfeil1,
  • Martin Busch1,
  • Merlin Dähmcke1,
  • Tara Brauckmann1,
  • Sonja Eilts1,
  • Marie-Christine Bründer1,
  • Milena Grundel1,
  • Bastian Grundel1,
  • Frank Tost1,
  • Jana Kuhn2,
  • Jörg Reindel2,
  • Petra Augstein2,
  • Wolfgang Kerner2 &
  • …
  • Andreas Stahl1 

Scientific Reports , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Medical imaging
  • Retinal diseases

Abstract

The escalating prevalence of diabetes mellitus (DM) emphasizes the critical need for early detection of diabetic retinopathy (DR). This study assesses the performance of the autonomous AI-based diagnostic system IDx-DR in detecting DR and its associated confounders in a real-world clinical setting. This prospective cross-sectional study involved 875 diabetic patients with a mean age of 52 years (range: 8–92). Retinal images were captured by trained assistants. IDx-DR results were compared with mydriatic fundus examination (gold standard) and Ophthalmologists’ image analysis. Factors impacting image acquisition or analyzability were examined. Among all patients, 10.5% yielded no image in miosis, and 26.1% were unanalyzable by IDx-DR. Confounders affecting image acquisition were examiner, pupil size, patient age and patients’ visual acuity. When good quality images were achieved, IDx-DR performed well, particularly in detection of severe DR (sensitivity 94.4%; specificity 90.5%). IDx-DR results exactly matched Ophthalmologists’ mydriatic fundoscopy gradings in 54.2% if images of sufficient quality were obtainable. Undergrading of DR severity by IDx-DR was rare (4.8%). IDx-DR shows promise in detecting DR, especially in resource-limited settings and in detecting severe DR. One remaining challenge is good image acquisition in miotic patients.

Similar content being viewed by others

Creating a retinal image database to develop an automated screening tool for diabetic retinopathy in India

Article Open access 06 March 2025

Recently updated global diabetic retinopathy screening guidelines: commonalities, differences, and future possibilities

Article 11 May 2021

Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based screening and human-graded ultra-widefield colour fundus images

Article Open access 07 February 2022

Data availability

The data presented in this study are available on request from the corresponding author. The data are not publicly available due to privacy of the patients.

References

  1. Tönnies, T. et al. Projected number of people with diagnosed Type 2 diabetes in Germany in 2040. Diabet. Med. 36, 1217–1225 (2019).

    Google Scholar 

  2. Williams, L. B., Prakalapakorn, S. G., Ansari, Z. & Goldhardt, R. Impact and Trends in Global Ophthalmology. Curr Ophthalmol Rep 8, 136–143 (2020).

    Google Scholar 

  3. Rohan, T. E., Frost, C. D. & Wald, N. J. Prevention of blindness by screening for diabetic retinopathy: A quantitative assessment. BMJ 299, 1198–1201 (1989).

    Google Scholar 

  4. Aderneuer, H. Telemedizin und künstliche Intelligenz im Zusammenhang mit Augenscreening. 11.

  5. Lei, C. et al. Facial expression of patients with Graves’ orbitopathy. J Endocrinol Invest 46, 2055–2066 (2023).

    Google Scholar 

  6. Grzybowski, A. & Brona, P. Analysis and Comparison of Two Artificial Intelligence Diabetic Retinopathy Screening Algorithms in a Pilot Study: IDx-DR and Retinalyze. JCM 10, 2352 (2021).

    Google Scholar 

  7. Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N. & Folk, J. C. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. npj Digital Med 1, 39 (2018).

  8. Paul, S. et al. Einsatz von künstlicher Intelligenz im Screening auf diabetische Retinopathie an einer diabetologischen Schwerpunktklinik. Ophthalmologe https://doi.org/10.1007/s00347-021-01556-5 (2022).

    Google Scholar 

  9. Ziemssen, F., Lemmen, K., Bertram, B., Hammes, H. P. & Agostini, H. Nationale Versorgungsleitlinie (NVL) Diabetische Retinopathie: 2. Auflage der NVL zur Therapie der diabetischen Retinopathie. Ophthalmologe 113, 623–638 (2016).

  10. Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98, 823–833 (1991).

  11. The ACCORD Study Group and ACCORD Eye Study Group. Effects of Medical Therapies on Retinopathy Progression in Type 2 Diabetes. N Engl J Med 363, 233–244 (2010).

  12. Landis, J. R. & Koch, G. G. The Measurement of Observer Agreement for Categorical Data. Biometrics 33, 159 (1977).

    Google Scholar 

  13. Motulsky, H. J. & Brown, R. E. Detecting outliers when fitting data with nonlinear regression – a new method based on robust nonlinear regression and the false discovery rate. BMC Bioinformatics 7, 123 (2006).

    Google Scholar 

  14. Bellemo, V. et al. Artificial intelligence using deep learning to screen for referable and vision-threatening diabetic retinopathy in Africa: A clinical validation study. The Lancet Digital Health 1, e35–e44 (2019).

    Google Scholar 

  15. Krause, J. et al. Grader Variability and the Importance of Reference Standards for Evaluating Machine Learning Models for Diabetic Retinopathy. Ophthalmology 125, 1264–1272 (2018).

    Google Scholar 

  16. Grzybowski, A. et al. Variability of Grading DR Screening Images among Non-Trained Retina Specialists. JCM 11, 3125 (2022).

    Google Scholar 

  17. Srinivasan, S. et al. Inter-observer agreement in grading severity of diabetic retinopathy in wide-field fundus photographs. Eye 37, 1231–1235 (2023).

    Google Scholar 

  18. Verbraak, F. D. et al. Diagnostic Accuracy of a Device for the Automated Detection of Diabetic Retinopathy in a Primary Care Setting. Dia Care 42, 651–656 (2019).

    Google Scholar 

  19. Treder, M., Diener, R. & Eter, N. Künstliche Intelligenz zum Management von Makulaödemen: Chancen und Herausforderungen. Ophthalmologe 117, 989–992 (2020).

    Google Scholar 

  20. Zhang, W. et al. The Validation of Deep Learning-Based Grading Model for Diabetic Retinopathy. Front. Med. 9, 839088 (2022).

    Google Scholar 

  21. Sedova, A. et al. Comparison of early diabetic retinopathy staging in asymptomatic patients between autonomous AI-based screening and human-graded ultra-widefield colour fundus images. Eye 36, 510–516 (2022).

    Google Scholar 

  22. Roser, P., Grohmann, C., Aberle, J., Spitzer, M. S. & Kromer, R. Evaluation der Implementierung eines zugelassenen Künstliche-Intelligenz-Systems zur Erkennung der diabetischen Retinopathie. Diabetologie und Stoffwechsel 16, 402–408 (2021).

    Google Scholar 

  23. Mehra, A. A., Softing, A., Guner, M. K., Hodge, D. O. & Barkmeier, A. J. Diabetic Retinopathy Telemedicine Outcomes with Artificial Intelligence-Based Image Analysis, Reflex Dilation, and Image Overread. American Journal of Ophthalmology S0002939422003105 (2022) https://doi.org/10.1016/j.ajo.2022.08.008.

  24. Liew, G., Mitchell, P., Wang, J. J. & Wong, T. Y. Fundoscopy: To dilate or not to dilate?. BMJ 332, 3 (2006).

    Google Scholar 

  25. Guillon, M. et al. The Effects of Age, Refractive Status, and Luminance on Pupil Size. Optom Vis Sci 93, 1093–1100 (2016).

    Google Scholar 

  26. Asbell, P. et al. Age-related cataract. The Lancet 365, 599–609 (2005).

    Google Scholar 

  27. Goldstein, J., Weitzman, D., Lemerond, M. & Jones, A. Determinants for scalable adoption of autonomous AI in the detection of diabetic eye disease in diverse practice types: Key best practices learned through collection of real-world data. Front. Digit. Health 5, 1004130 (2023).

    Google Scholar 

  28. Helmchen, L. A., Lehmann, H. P. & Abràmoff, M. D. Automated detection of retinal disease. Am J Manag Care 20, eSP48–52 (2014).

  29. Oke, J. L., Stratton, I. M., Aldington, S. J., Stevens, R. J. & Scanlon, P. H. The use of statistical methodology to determine the accuracy of grading within a diabetic retinopathy screening programme. Diabet. Med. 33, 896–903 (2016).

    Google Scholar 

  30. Tufail, A. et al. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technol Assess 20, 1–72 (2016).

    Google Scholar 

  31. Sahoo, M., Ghorai, S., Pal, S. & Mitra, M. A Multi-Layer stacked ensemble classifier model for improved classification accuracy of Maculopathy gradation. Displays 73, 102213 (2022).

    Google Scholar 

  32. Zhang, X., Li, Y., Dong, S., Di, C. & Ding, M. The influence of user cognition on consumption decision-making from the perspective of bounded rationality. Displays 77, 102392 (2023).

    Google Scholar 

Download references

Acknowledgements

Special thanks go to the non-medical functional team at the Karlsburg Clinic for Diabetes and Metabolic Diseases for their active support in this project.

Institutional review board statement

The study was conducted in accordance with the Declaration of Helsinki, and approved by the Ethics Committee of the University Medical Center Greifswald (BB 025/20).

Funding

Open Access funding enabled and organized by Projekt DEAL. This project was supported in part by funds from the EYEnovative grant from Novartis (to B.G.).

Author information

Authors and Affiliations

  1. Department of Ophthalmology, University Medical Center Greifswald, Ferdinand-Sauerbruch-Straße, 17475, Greifswald, Germany

    Elisabeth Hunfeld, Allam Tayar, Sebastian Paul, Broder Poschkamp, Rico Großjohann, Eva Morawiec-Kisiel, Beathe Bohl, Johanna M. Pfeil, Martin Busch, Merlin Dähmcke, Tara Brauckmann, Sonja Eilts, Marie-Christine Bründer, Milena Grundel, Bastian Grundel, Frank Tost & Andreas Stahl

  2. Hospital for Diabetes and Metabolic Diseases Karlsburg, Greifswalder Str. 11, 17495, Karlsburg, Germany

    Jana Kuhn, Jörg Reindel, Petra Augstein & Wolfgang Kerner

Authors
  1. Elisabeth Hunfeld
    View author publications

    Search author on:PubMed Google Scholar

  2. Allam Tayar
    View author publications

    Search author on:PubMed Google Scholar

  3. Sebastian Paul
    View author publications

    Search author on:PubMed Google Scholar

  4. Broder Poschkamp
    View author publications

    Search author on:PubMed Google Scholar

  5. Rico Großjohann
    View author publications

    Search author on:PubMed Google Scholar

  6. Eva Morawiec-Kisiel
    View author publications

    Search author on:PubMed Google Scholar

  7. Beathe Bohl
    View author publications

    Search author on:PubMed Google Scholar

  8. Johanna M. Pfeil
    View author publications

    Search author on:PubMed Google Scholar

  9. Martin Busch
    View author publications

    Search author on:PubMed Google Scholar

  10. Merlin Dähmcke
    View author publications

    Search author on:PubMed Google Scholar

  11. Tara Brauckmann
    View author publications

    Search author on:PubMed Google Scholar

  12. Sonja Eilts
    View author publications

    Search author on:PubMed Google Scholar

  13. Marie-Christine Bründer
    View author publications

    Search author on:PubMed Google Scholar

  14. Milena Grundel
    View author publications

    Search author on:PubMed Google Scholar

  15. Bastian Grundel
    View author publications

    Search author on:PubMed Google Scholar

  16. Frank Tost
    View author publications

    Search author on:PubMed Google Scholar

  17. Jana Kuhn
    View author publications

    Search author on:PubMed Google Scholar

  18. Jörg Reindel
    View author publications

    Search author on:PubMed Google Scholar

  19. Petra Augstein
    View author publications

    Search author on:PubMed Google Scholar

  20. Wolfgang Kerner
    View author publications

    Search author on:PubMed Google Scholar

  21. Andreas Stahl
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization, A. Stahl, A. Tayar, S. Paul, J. Kuhn, P. Augstein, W. Kerner; methodology, A. Stahl, A. Tayar, S. Paul, J. Kuhn, P. Augstein, W. Kerner; software, B. Poschkamp, R. Großjohann, J. Pfeil; validation E. Hunfeld, A. Tayar, S. Paul, B. Poschkamp, R. Großjohann, E. Morawiec-Kisiel, B. Bohl, J. Pfeil, M. Busch, M. Dähmcke, T. Brauckmann, S. Eilts, M-C. Bründer, M. Grundel, B. Grundel, F. Tost, J. Kuhn, J. Reindel, P. Augstein, W. Kerner, A. Stahl; formal analysis, E. Hunfeld, B. Poschkamp, A. Stahl; investigation, A. Tayar, S. Paul, B. Bohl, E. Morawiec-Kisiel, E. Hunfeld; resources, A. Stahl, B. Grundel, W. Kerner, J. Reindel, P. Augstein; data curation, E. Hunfeld, B. Poschkamp, R. Großjohann; writing—original draft preparation, E. Hunfeld; writing—review and editing, E. Hunfeld, A. Tayar, S. Paul, B. Poschkamp, R. Großjohann, E. Morawiec-Kisiel, B. Bohl, J. Pfeil, M. Busch, M. Dähmcke, T. Brauckmann, S. Eilts, M-C. Bründer, M. Grundel, B. Grundel, F. Tost, J. Kuhn, J. Reindel, P. Augstein, W. Kerner, A. Stahl; visualization, E. Hunfeld, J. Pfeil, B. Poschkamp, A. Stahl; supervision, A. Stahl, W. Kerner, J. Reindel, P. Augstein; project administration, E. Hunfeld, A. Stahl; funding acquisition, B. Grundel, J. Reindel, P. Augstein, W. Kerner, A. Stahl.

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Elisabeth Hunfeld.

Ethics declarations

Competing interests

B. Grundel points out the following relationships: Relationship: Novartis, Specifications: EYEnovative Förderpreis. E. Hunfeld, A. Tayar, S. Paul, B. Poschkamp, R. Großjohann, E. Morawiec-Kisiel, B. Bohl, J.M. Pfeil, M. Busch, M. Dähmcke, T. Brauckmann, S. Eilts, M.-C. Bründer, M. Grundel, B. Grundel, F. Tost, J. Kuhn, J. Reindel, P. Augstein, W. Kerner and A. Stahl declare that there is no conflict of interest.

Informed consent

Informed consent was obtained from all subjects involved in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hunfeld, E., Tayar, A., Paul, S. et al. Real-world performance of the AI diagnostic system IDx-DR in the diagnosis of diabetic retinopathy and its main confounders. Sci Rep (2026). https://doi.org/10.1038/s41598-026-36970-9

Download citation

  • Received: 19 April 2025

  • Accepted: 19 January 2026

  • Published: 29 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-36970-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Diabetic retinopathy
  • AI-based diagnostics
  • IDx-DR
  • Retinal Imaging
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing