Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Scientific Reports
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. scientific reports
  3. articles
  4. article
Indirect effects of higher mean air temperature related to climate change on major life-history traits in a pulsed-resource consumer
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 23 January 2026

Indirect effects of higher mean air temperature related to climate change on major life-history traits in a pulsed-resource consumer

  • Lukas Hochleitner  ORCID: orcid.org/0000-0002-8155-55631,
  • Shane Morris1,
  • Maximilian Bastl2,
  • Thomas Ruf1 &
  • …
  • Claudia Bieber1 

Scientific Reports , Article number:  (2026) Cite this article

  • 224 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Climate-change ecology
  • Ecology

Abstract

Climate change is directly and indirectly affecting species. The degree of these effect types differs by species and context, with indirect effects likely to be stronger for consumers of pulsed resources. Here, we investigated how higher mean air temperature related to climate change affects masting, and in parallel, how this change affects life-history traits in edible dormice (Glis glis). We analysed 17 years of capture-recapture data from 2,530 individuals. We collected air temperature, and, as a measure of seed production, pollen data from European beech (Fagus sylvatica). Our results show that increasing mean air temperature was associated with a shift in beech pollen production, leading to a biannual mast cycle in recent years, with alteration of years with very high and very low seed availability. The changed cycle in mast events resulted in a significant reduction in overall yearling survival in dormice, while overall adult survival remained stable. In parallel, both age classes significantly increased their litter size in this timeframe. Furthermore, survival probabilities in the two age classes also differed depending on the beech mast status (mast, mast-failure). We show that the observed dramatic changes in seed production had complex effects on life-history traits in a pulsed resource consumer.

Data availability

The datasets analysed during the current study are available at Dryad Digital Repository (after acceptance of the manuscript).

References

  1. Ockendon, N. et al. Mechanisms underpinning Climatic impacts on natural populations: altered species interactions are more important than direct effects. Glob Chang. Biol. 20 (7), 2221–2229. https://doi.org/10.1111/gcb.12559 (2014).

    Google Scholar 

  2. Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. J. Anim. Ecol. 90 (6), 1398–1407. https://doi.org/10.1111/1365-2656.13467 (2021).

    Google Scholar 

  3. Pearson, R. G. et al. Life history and Spatial traits predict extinction risk due to climate change. Nat. Clim. Chang. 4 (3), 217–221. https://doi.org/10.1038/nclimate2113 (2014).

    Google Scholar 

  4. Wiehn, J. J. & Zelinka, J. How many species will Earth lose to climate change? Glob Chang. Biol. 30 (1), e17125. https://doi.org/10.1111/gcb.17125 (2024).

    Google Scholar 

  5. Bradley, B. A. et al. Observed and potential range shifts of native and nonnative species with climate change. Annu. Rev. Ecol. Evol. Syst. 55, 23–40. https://doi.org/10.1146/annurev-ecolsys-102722-013135 (2024).

    Google Scholar 

  6. McClelland, G. T. W. et al. Climate change leads to increasing population density and impacts of a key Island invader. Ecol. Appl. 28 (1), 212–224. https://doi.org/10.1002/eap.1642 (2017).

    Google Scholar 

  7. Millon, A. et al. Dampening prey cycle overrides the impact of climate change on predator population dynamics: a long-term demographic study on tawny owls. Glob. Chang. Biol. 20(6), 1770–1781. https://doi.org/10.1111/gcb.12546 (2014).

  8. Quéroué, M. et al. Multispecies integrated population model reveals bottom-up dynamics in a seabird predator-prey system. Ecol. Monogr. 91 (3), e01459. https://doi.org/10.1002/ecm.1459 (2021).

    Google Scholar 

  9. Peers, M. J. L. et al. Climate change increases predation risk for a keystone species of the boreal forest. Nat. Clim. Chang. 10 (12), 1149–1153. https://doi.org/10.1038/s41558-020-00908-4 (2020).

    Google Scholar 

  10. Kausrud, K. L. et al. Linking climate change to lemming cycles. Nature 456 (7218), 93–97. https://doi.org/10.1038/nature07442 (2008).

    Google Scholar 

  11. Mangeon, S., Spessa, A., Deveson, E., Darnell, R. & Kriticos, D. J. Daily mapping of Australian plague locust abundance. Sci. Rep. 10 (1), e16915. https://doi.org/10.1038/s41598-020-73897-1 (2020).

    Google Scholar 

  12. Bogdziewicz, M. How will global change affect plant reproduction? A framework for mast seeding trends. New. Phytol. 234 (1), 14–20. https://doi.org/10.1111/nph.17682 (2022).

    Google Scholar 

  13. Koerner, S. E. et al. Invasibility of a mesic grassland depends on the time-scale of fluctuating resources. J. Ecol. 103 (6), 1538–1546. https://doi.org/10.1111/1365-2745.12479 (2015).

    Google Scholar 

  14. Matthews, J. D. The influence of weather on the frequency of Beech mast years in England. Forestry 28 (2), 107–116. https://doi.org/10.1093/forestry/28.2.107 (1995).

    Google Scholar 

  15. Schauber, E. M. et al. Masting by eighteen new Zealand plant species: the role of temperature as a synchronizing cue. Ecology 83 (5), 1214–1225. https://doi.org/10.1890/0012-9658(2002)083 (2002). [1214:MBENZP]2.0.CO;2.

    Google Scholar 

  16. Clotfelter, E. D. et al. Acorn mast drives long-term dynamics of rodent and Songbird populations. Oecologia 154, 493–503. https://doi.org/10.1007/s00442-007-0859-z (2007).

    Google Scholar 

  17. McShea, W. J. The influence of acorn crops on annual variation in rodent and bird populations. Ecology 81 (1), 228–238. https://doi.org/10.1890/0012-9658(2000)081[ (2000). 0228:TIOACO]2.0.CO;2.

    Google Scholar 

  18. Yang, L. H., Bastow, J. L., Spence, K. O. & Wright, A. N. What can we learn from resource pulses? Ecology 89 (3), 621–634. https://doi.org/10.1890/07-0175.1 (2008).

    Google Scholar 

  19. Vetter, S. G., Ruf, T., Bieber, C. & Arnold, W. What is a mild winter? Regional differences in Within-Species responses to climate change. PLoS ONE. 10 (7), e0132178. https://doi.org/10.1371/journal.pone.0132178 (2015).

    Google Scholar 

  20. Zwolak, R., Celebias, P. & Bogdziewicz, M. Global patterns in the predator satiation effect of masting: A meta-analysis. PNAS 119 (11), e2105655119. https://doi.org/10.1073/pnas.2105655119 (2022).

    Google Scholar 

  21. Bogdziewicz, M. et al. Mechanisms, and consequences of mast seeding. Annu. Rev. Ecol. Evol. Syst. 56, 119–144. https://doi.org/10.1146/annurev-ecolsys-102723-052948 (2025).

    Google Scholar 

  22. Boutin, S. et al. Anticipatory reproduction and population growth in seed predators. Science 314 (5807), 1928–1930. https://doi.org/10.1126/science.1135520 (2006).

    Google Scholar 

  23. Tissier, M. L., Réale, D., Garant, D. & Bergeron, P. Consumption of red maple in anticipation of Beech mast-seeding drives reproduction in Eastern chipmunks. J. Anim. Ecol. 89 (5), 1190–1201. https://doi.org/10.1111/1365-2656.13183 (2020).

    Google Scholar 

  24. Bieber, C. Population dynamics, sexual activity, and reproduction failure in the fat dormouse (Myoxus glis). J. Zool. 244 (2), 223–229. https://doi.org/10.1111/j.1469-7998.1998.tb00027.x (1998).

    Google Scholar 

  25. Stearns, S. G. The Evolution of Life Histories (Oxford University Press, 1998).

  26. Williams, G. C. Natural selection, the costs of reproduction, and a refinement of lack’s principle. Am. Nat. 100 (916), 687–690. https://doi.org/10.1086/282461 (1966).

    Google Scholar 

  27. Rubach, K. et al. Testing the reproductive and somatic trade-off in female Columbian ground squirrels. Ecol. Evol. 6 (21), 7586–7595. https://doi.org/10.1002/ece3.2215 (2016).

    Google Scholar 

  28. Speakman, J. R. The physiological costs of reproduction in small mammals. Philos. Trans. R Soc. Lond. B Biol. Sci. 363 (1490), 375–398. https://doi.org/10.1098/rstb.2007.2145 (2008).

    Google Scholar 

  29. Turbill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R Soc. Lond. B Biol. Sci. 278 (1723), 3355–3363. https://doi.org/10.1098/rspb.2011.0190 (2011).

    Google Scholar 

  30. Shattuck, M. R. & Williams, S. A. Arboreality has allowed for the evolution of increased longevity in mammals. PNAS 107 (10), 4635–4639. https://doi.org/10.1073/pnas.0911439107 (2010).

    Google Scholar 

  31. Allison, A. Z. T., Conway, C. J. & Morris, A. E. Why hibernate? Tests of four hypotheses to explain intraspecific variation in hibernation phenology. Funct. Ecol. 37, 1580–1593. https://doi.org/10.1111/1365-2435.14322 (2023).

    Google Scholar 

  32. Lebl, K. et al. Survival rates in a small hibernator, the edible dormouse: a comparison across Europe. Ecography 34 (4), 683–692. https://doi.org/10.1111/j.1600-0587.2010.06691.x (2011).

    Google Scholar 

  33. Hoelzl, F. et al. How to spend the summer? Free-living dormice (Glis glis) can hibernate for 11 months in non-reproductive years. J. Comp. Physiol. B. 185 (8), 931–939. https://doi.org/10.1007/s00360-015-0929-1 (2015).

    Google Scholar 

  34. Ruf, T., Bieber, C. & Physiological Behavioral, and Life-History adaptions to environmental fluctuations in the edible dormouse. Front. Physiol. 11, e423. https://doi.org/10.3389/fphys.2020.00423 (2020).

    Google Scholar 

  35. Vekhnik, V. A., Ruf, T. & Bieber, C. A. Review on the edible dormouse reproduction (Glis Glis Linnaeus, 1766). J. Wildl. Biodivers. 6, 24–45. https://doi.org/10.5281/zenodo.7338112 (2022).

    Google Scholar 

  36. Piovesan, G. & Adams, J. M. Masting behaviour in beech: linking reproduction and Climatic variation. Can. J. Bot. 79 (9), 1039–1047. https://doi.org/10.1139/b01-089 (2001).

    Google Scholar 

  37. Oro, D., Freixas, L., Bartrina, C., Míguez, S. & Torre, I. Direct and indirect effects of climate and seed dynamics on the breeding performance of a seed predator at the distribution edge. Ecol. Evol. 14 (8), e70104. https://doi.org/10.1002/ece3.70104 (2024).

    Google Scholar 

  38. Trout, R. C., Brooks, S. & Morris, P. Nest box usage by old edible dormice (Glis glis) in breeding and non-breeding years. Folia Zool. 64 (4), 320–324. https://doi.org/10.25225/fozo.v64.i4.a5.2015 (2015).

    Google Scholar 

  39. Schau, M. & Vaterlaus-Schlegel, C. Annual and seasonal variation of survival rates in the garden dormouse (Eliomys quercinus). J. Zool. 255 (1), 89–96. https://doi.org/10.1017/S0952836901001133 (2001).

    Google Scholar 

  40. Ruf, T., Fietz, J., Schlund, W. & Bieber, C. High survival in poor years: life history tactics adapted to mast seeding in the edible dormouse. Ecology 87 (2), 372–381. https://doi.org/10.1890/05-0672 (2006).

    Google Scholar 

  41. Havenstein, N., Langer, F., Weiler, U., Stefanski, V. & Fietz, J. Bridging environment, physiology and life history: stress hormones in a small hibernator. Mol. Cell. Endocrinol. 533, e111315. https://doi.org/10.1016/j.mce.2021.111315 (2021).

    Google Scholar 

  42. Hacket-Pain, A. & Bogdziewicz, M. Climate change and plant reproduction: trends and drivers of mast seeding change. Philos. Trans. R Soc. Lond. B Biol. Sci. 376 (1839), e20200379. https://doi.org/10.1098/rstb.2020.0379 (2021).

    Google Scholar 

  43. Wells, C. P., Barbier, R., Nelson, S. & Kanaziz, R. Aubry. L. M. Life history consequences of climate change in hibernating mammals: a review. Ecography 6 (6), e6056. https://doi.org/10.1111/ecog.06056 (2022).

    Google Scholar 

  44. Touzot, L. et al. How does increasing mast seeding frequency affect population dynamics of seed consumers? Wild Boar as case study. Ecol. Appl. 30 (6), e02134. https://doi.org/10.1002/eap.2134 (2020).

    Google Scholar 

  45. Rödel, H. G., Valencak, T. G., Handrek, A. & Moclús, R. Paying the energetic costs of reproduction: reliance on postpartum foraging and stored reserves. Behav. Ecol. 27 (3), 748–756. https://doi.org/10.1093/beheco/arv217 (2016).

    Google Scholar 

  46. Allison, A. Z. T. & Conway, C. J. Daily foraging activity of an imperilled ground squirrel: effects of hibernation, thermal environment, body condition, and conspecific density. Behav. Ecol. Sociobiol. 76 (2), e28. https://doi.org/10.1007/s00265-022-03142-4 (2022).

    Google Scholar 

  47. Daly, M., Behrends, P. R., Wilson, M. I. & Jacobs, L. F. Behavioural modulation of predation risk: moonlight avoidance and crepuscular compensation in a nocturnal desert rodent, Dipodomys merriami. Anim. Behav. 44 (1), 1–9. https://doi.org/10.1016/S0003-3472(05)80748-1 (1992).

    Google Scholar 

  48. Turbill, C. & Stojanovski, L. Torpor reduces predation risk by compensating for the energetic cost of antipredator foraging behaviours. Proc. Biol. Sci. B, 285, e20182370. https://doi.org/10.1098/rspb.2018.2370 (2018).

  49. Stawski, C. & Geiser, F. Fat and fed: frequent use of summer torpor in a subtropical Bat. Naturwissenschaften 97, 29–35. https://doi.org/10.1007/s00114-009-0606-x (2010).

    Google Scholar 

  50. Schaefer, A., Piquard, F. & Haberey, P. Food self-selection during spontaneous body weight variations in the dormouse (Glis glis). Comp. Biochem. Physiol. 52, 115–118. https://doi.org/10.1016/0300-9629(76)90077-3 (1976).

    Google Scholar 

  51. Bieber, C. & Ruf, T. Summer dormancy in edible dormice (Glis glis) without energetic constraints. Naturwissenschaften 96, 165–171. https://doi.org/10.1007/s00114-008-0471-z (2009).

    Google Scholar 

  52. Turbill, C. & Prior, S. Thermal climate-linked variation in annual survival rate of hibernating rodents: shorter winter dormancy and lower survival in warmer climates. Funct. Ecol. 30 (8), 1366–1372. https://doi.org/10.1111/1365-2435.12620 (2016).

    Google Scholar 

  53. Klug, B. J. & Brigham, R. M. Changes to metabolism and cell physiology that enable mammalian hibernation. Springer Sci. Rev. 3, 39–56. https://doi.org/10.1007/s40362-015-0030-x (2015).

    Google Scholar 

  54. Broussard, D. R., Dobson, F. S. & Murie, J. O. The effects of capital on an income breeder: evidence from female Columbian ground squirrels. Can. J. Zool. 83 (4), 546–552. https://doi.org/10.1139/z05-044 (2005).

    Google Scholar 

  55. Humphries, M. M., Thomas, D. W. & Kramer, D. L. The role of energy availability in mammalian hibernation: A Cost-Benefit approach. Physiol. Biochem. Zool. 76 (2), 165–179. https://doi.org/10.1086/367950 (2003).

    Google Scholar 

  56. Lindstedt, S. L., Boyce, M. S. & Seasonality Fasting Endurance, and body size in mammals. Am. Nat. 125 (6), 873–878. https://doi.org/10.1086/284385 (1985).

    Google Scholar 

  57. Descamps, S., Boutin, S., Berteaux, D. & Gaillard, J. M. Female red squirrels fit williams’ hypothesis of increasing reproductive effort with increasing age. J. Anim. Ecol. 76, 1192–1201 (2007). https://www.jstor.org/stable/4539230

    Google Scholar 

  58. Shibata, M., Masaki, T., Yagihashi, T., Shimada, T. & Saitoh, T. Decadal changes in masting behaviour of oak trees with rising temperature. J. Ecol. 108 (3), 1088–1100. https://doi.org/10.1111/1365-2745.13337 (2020).

    Google Scholar 

  59. Zhao, Z. J. et al. Late lactation in small mammals is a critically sensitive window vulnerability to elevated ambient temperature. Proc. Natl. Acad. Sci. U S A. 117 (39), 24352–24358. https://doi.org/10.1073/pnas.2008974117 (2020).

    Google Scholar 

  60. Schwartz, T. S., Pearson, P., Dawson, J., Allison, D. B. & Gohlke, J. M. Effects of fluctuating temperature and food availability on reproduction and lifespan. Exp. Gerontol. 86, 62–72. https://doi.org/10.1016/j.exger.2016.06.010 (2016).

    Google Scholar 

  61. Bogdziewicz, M. et al. Reproductive collapse in European Beech results from declining pollination efficiency in large trees. Glob Chang. Biol. 29 (16), 4595–4604. https://doi.org/10.1111/gcb.16730 (2023).

    Google Scholar 

  62. Cornils, J. S., Hoelzl, F., Rotter, B., Bieber, C. & Ruf, T. Edible dormice (Glis glis) avoid areas with high density of their preferred food plant – the European Beech. Front. Zool. 14, e23. https://doi.org/10.1186/s12983-017-0206-0 (2017).

    Google Scholar 

  63. Morris, P. A. & Hoodless, A. Movements and hibernaculum site in the fat dormouse (Glis glis). J. Zool. 228 (4), 685–687. https://doi.org/10.1111/j.1469-7998.1992.tb04468.x (1992).

    Google Scholar 

  64. Hirst, J. M. An automatic volumetric spore trap. Ann. Appl. Biol. 39 (2), 257–265. https://doi.org/10.1111/j.1744-7348.1952.tb00904.x (1952).

    Google Scholar 

  65. Galán, C. et al. Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30, 385–395. https://doi.org/10.1007/s10453-014-9335-5 (2014).

    Google Scholar 

  66. Bogdziewicz, M. et al. Masting in wind-pollinated trees: system-specific roles of weather and pollination dynamics in driving seed production. Ecology 98 (10), 2615–2625. https://doi.org/10.1002/ecy.1951 (2017).

    Google Scholar 

  67. R Development Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2022).

  68. White, G. C., Burnham, K. P. & Program, M. A. R. K. Survival Estimation from populations of marked animals. Bird. Study. 46, 120–138. https://doi.org/10.1080/00063659909477239 (1999).

    Google Scholar 

  69. Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear Mixed-Effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).

    Google Scholar 

  70. Zuur, A., Ieno, E., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).

  71. Akaike, H. Information theory and extension of the maximum likelihood principle. In Proceedings of 2nd International Symposium on Information Theory, edited by. B. N. Petrov, and F. Csaki. Akademia Kaido (1973).

  72. Barton, K. MuMIn: Multi-Model Inference. R package version 1.47.5, (2023). https://cran.rproject.org/web/packages/MuMIn.

  73. Sutherland, C. et al. Practical advice on variable selection and reporting using Akaike information criterion. Proc. R. Soc. Lond. B. Biol. Sci. 290 e20231261, (2007). https://doi.org/10.1098/rspb.2023.1261 (2023).

  74. Marwick, B. & Krishnamoorthy, K. Cvequality: tests for the equality of coefficients of variation from multiple groups. R Package Version 0.2.0, (2022). https://cran.r-project.org/web/packages/cvequality.

  75. Laake, J. L. RMark: An R Interface for analysis of capture-recapture data with MARK. R package version 3.0.0, (2022). https://cran.r-project.org/web/packages/RMark.

  76. Lebreton, J. D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62 (1), 67–118. https://doi.org/10.2307/2937171 (1992).

    Google Scholar 

  77. Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).

  78. Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom J. 50 (3), 346–363. https://doi.org/10.1002/bimj.200810425 (2008).

    Google Scholar 

Download references

Acknowledgements

We thank Karin Lebl, Birgit Rotter and Jessica Cornils for their assistance with the field work. We are grateful to Österreichische Bundesforste AG for their permission to use the area for our dormouse research, and the city of Vienna as well as the “Gesellschaft zur Förderung des Forschungsinstituts für Wildtierkunde und Ökologie” for providing financial support. The authors want to thank the Geosphere Austria which provided the facilities for running the Hirst-type pollen trap on the rooftop at “Hohe Warte” in Vienna from 2003 until 2022 as well as the AZ Pollen Research GmbH (former SciCon Pharma Science-Consulting GmbH) for providing the sampler (Hirst-type pollen trap at the GeoSphere Austria) and some lab materials for the respective period. Moreover, we want to thank Uwe Berger for establishing the contact (at that time affiliated with Medical University Vienna) and Prof. Siegfried Jäger † for initiating aerobiological pollen measurements in Vienna and his data analyses from the years 1976 until 2011.

Funding

This study was financially supported by the “Gesellschaft zur Förderung des Forschungsinstituts für Wildtierkunde und Ökologie” and the City of Vienna. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

  1. Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria

    Lukas Hochleitner, Shane Morris, Thomas Ruf & Claudia Bieber

  2. Department of Oto-Rhino-Laryngology, Medical University of Vienna, Vienna, Austria

    Maximilian Bastl

Authors
  1. Lukas Hochleitner
    View author publications

    Search author on:PubMed Google Scholar

  2. Shane Morris
    View author publications

    Search author on:PubMed Google Scholar

  3. Maximilian Bastl
    View author publications

    Search author on:PubMed Google Scholar

  4. Thomas Ruf
    View author publications

    Search author on:PubMed Google Scholar

  5. Claudia Bieber
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L. H.: *Formal analysis, Investigation, Data curation, Writing – original draft, Writing – review & editing, Visualization* ; S. M.: *Writing - review & editing* ; M. B.: *Resources, Writing - review & editing* ; T. R.: *Conceptualization, Methodology, Funding acquisition, Supervision, Writing – review & editing; * C. B.: *Conceptualization, Methodology, Investigation, Resources, Funding acquisition, Supervision, Writing - review & editing.* All authors gave final approval for publication.

Corresponding author

Correspondence to Lukas Hochleitner.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochleitner, L., Morris, S., Bastl, M. et al. Indirect effects of higher mean air temperature related to climate change on major life-history traits in a pulsed-resource consumer. Sci Rep (2026). https://doi.org/10.1038/s41598-026-37071-3

Download citation

  • Received: 29 May 2025

  • Accepted: 19 January 2026

  • Published: 23 January 2026

  • DOI: https://doi.org/10.1038/s41598-026-37071-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Temperature change
  • Resource pulse
  • Glis glis
  • Life-history
  • Hibernator
  • Seed consumer
Download PDF

Advertisement

Explore content

  • Research articles
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Facebook
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • About Scientific Reports
  • Contact
  • Journal policies
  • Guide to referees
  • Calls for Papers
  • Editor's Choice
  • Journal highlights
  • Open Access Fees and Funding

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Scientific Reports (Sci Rep)

ISSN 2045-2322 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene